
Reducing Trials by Thinning-out in Skill

Discovery

Hayato Kobayashi1, Kohei Hatano2, Akira Ishino1, and Ayumi Shinohara1

1 Graduate School of Information Science, Tohoku University, Japan
2 Department of Informatics, Kyushu University, Japan

kobayashi@shino.ecei.tohoku.ac.jp, hatano@i.kyushu-u.ac.jp,
ishino@ecei.tohoku.ac.jp, ayumi@ecei.tohoku.ac.jp

Abstract. In this paper, we propose a new concept, thinning-out, for
reducing the number of trials in skill discovery. Thinning-out means to
skip over such trials that are unlikely to improve discovering results, in
the same way as “pruning” in a search tree. We show that our thinning-
out technique significantly reduces the number of trials. In addition, we
apply thinning-out to the discovery of good physical motions by legged
robots in a simulation environment. By using thinning-out, our virtual
robots can discover sophisticated motions that is much different from the
initial motion in a reasonable amount of trials.

1 Introduction

Skill discovery is a task to obtain an ability to perform well in a target domain,
through trial and error. It can be formulated as an optimization problem, in
which the goal is to find a solution x in a vast search space X that maximizes (or
minimizes) a score function f : X → R. When the shape of f is not known and
there is no satisfactory problem-specific algorithm or heuristic, meta-heuristic
guides to pick up the next candidate, based on the previous candidates and
their evaluated scores. Various meta-heuristics are proposed and experimented,
such as Genetic Algorithms (GA) and Simulated Annealing (SA). These meta-
heuristics in general contribute to reduce the number of trials, in order to find
a good solution x in X . Nevertheless, for some problem domains, the number
of trials is still too large, especially when each trial consumes a considerable
amount of time and costs. Skill discovery in robot movements, which we treat
as a target application in this paper, is an instance of them.

When GA or SA picks up the next candidate to try, it is often duplicated: it
could be already experimented in the past trials. Ratle [1] proposed an efficient
method to avoid such duplications using function approximation. He showed
that the method can reduce the number of actual function calls by creating an
approximate model of the score function using kriging interpolation and using
the model instead of the original score function for evaluating some of the next
generations. When the score function can not be regarded as a deterministic
function because of the noisy environment, duplicated trials are meaningful to



increase the certainty of the evaluations. Sano et al. [2] proposed Memory-based
Fitness Evaluation GA for noisy environment. They estimated more proper fit-
ness values (or scores) by weighted average of neighboring scores, so as to reduce
the number of trials more than multiple sampling methods (i.e., to evaluate
fitness values several times in each trial.)

In this paper, we take another approach to reduce the trials, based on the idea
that we can theoretically determine whether or not the selected candidates are
worth evaluating, if the gradient of the score function is given. If the candidate
x is unlikely to improve the results obtained so far, we do not perform the trial
and just skip it. We call this method thinning-out, which contrasts to pruning in
a search tree. One advantage of our method is that we can naturally combine the
thinning-out with any search methods including GA and SA as well as random
search. In preliminary experiments, we combined it with a simple random search
method, and observed that the resulting number of trials is usually reduced to
logarithmic with respect to the number of candidates. In this paper, we show
that our thinning-out method significantly reduces the number of trials with a
small failure rate with a combination with GA.

We address skill discovery by legged robots in a simulation environment as
its application. For legged robots to function in the real world, they must need
the ability to acquire such basic skills as walking, running, pushing, kicking,
and so on. The ability for robots to learn some skills is known as skill learning,
and is regarded as important. For several years, there have been many studies
conducted on skill learning by legged robots. Kim and Uther [3] studied the
learning of fast quadruped locomotion skills by modeling the locus of their gait
as a quadrangle. Kohl and Stone [4] also studied the learning of stable quadruped
locomotion by modeling the locus of their gait as a semi-ellipsoid. Fidelman and
Stone [5] proposed a learning method for acquiring the ball-grasping skill. The
learning task consists of two layers, the first for walking and the second for
pinching the ball by its chin. Kobayashi et al. [6] studied the reinforcement
learning to trap a moving ball. The goal of the learning was to acquire a good
timing to initiate the catch motion, depending on the distance and the speed of
the ball, whose movement was restricted to one dimension.

In this paper, we make robots to discover good shot motions, as Zagal and
Solar [7] also addressed in their work. Compared with other tasks mentioned
above, discovery of good shot motions could be more challenging, because it
is difficult to construct a good model for shot motions. Although our work is
similar to Zagal and Solar’s, our parameterization is more flexible. On the other
hand, flexibility of parameters implies that it takes many trials in the discovery
process. Lee et al. [8] successfully realized flexible movements of legged robots
to climb over a variety of obstacles by reinforcement learning with supervised
information. Since we can not prepare supervised information for good motions
other than an initial motion, we must find good motions in large search spaces.
Our thinning-out method can reduce the number of trials in such problem and
realize the flexibility in feasible trials.

2



The remainder of this paper is organized as follows. In Section 2, we describe
the concept of thinning-out and propose two inferring methods for it. In Sec-
tion 3, we evaluate our method using the minimization problem of mathematical
test functions. In Section 4, we apply our method to discovery of good shot mo-
tions by legged robots in a simulation environment. Finally, Section 5 presents
our conclusions.

2 Thinning-out

In this section, we treat the maximization problem of unknown score function.
We assume that the score function is continuous and, to some extent, smooth
over the search space. Our assumption seems reasonable because each robot
movement is continuous and thus small changes of parameters will not affect the
score significantly. Based on this assumption, we infer local shapes of the score
function. Given a candidate point to try, we estimate the score of the candidate
point by using the distance from the nearest neighborhood whose score is known.
We thin-out the candidate point if the estimated upperbound of the score is
lower than the current highest score. Note that our method does not take into
account the distance from the current highest point. In other words, we do not
assume that the true highest point lies near the current highest one. Therefore
an expected point with high score, even it is far from the current highest point,
has a chance to be tried. In summary, our method is robust and it is unlikely to
get stuck in local maxima.

Now we define the local smoothness of the score function in terms of Lipschitz
condition, which is found in standard textbooks on calculus. We use g-Lipschitz
continuous for some function g, as natural extension of c-Lipschitz for some
constant c in the textbooks.

Definition 1 (Lipschitz condition). Let R be the set of real numbers, X be

a metric space with metric d, and f : X → R be a score function on it. Given a

function g : R → R, f is said to be g-Lipschitz continuous, if it holds for any

x1, x2 ∈ R that

|f(x1) − f(x2)| ≤ g(d(x1, x2)).

The function g is called Lipschitz function.

Suppose that a score function f is g-Lipschitz continuous. Then, for any
points x1 and x2, an upperbound of f(x1) is obtained by

f(x1) ≤ f(x2) + g(d(x1, x2)).

Our thinning-out strategy is to infer a proper Lipschitz function which charac-
terizes the score function f , so as to obtain an upperbound of the score of a
candidate point. If the upperbound is smaller than the current best score, we do
not have to try the candidate point. We will explain the details of our methods to
infer Lipschitz functions soon. Our thinning-out condition is formally described
as follows:
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Definition 2 (Thinning-out condition). Let xb be the point whose score

f(xb) is the current best. Let xc be a candidate to try. Let xn be the nearest

neighbor of the candidate. Given an inferred function ĝ : R → R, xc is said to

satisfy the thinning-out condition with respect to ĝ, if it holds that

f(xn) + ĝ(d(xc, xn)) ≤ f(xb)

Now we propose two methods to infer Lipschitz functions.

Max Gradient Method

Suppose that we know the maximum gradient

c = max
x1,x2∈X, x1 6=x2

|f(x1) − f(x2)|

d(x1, x2)

of the score function f , over any two different points x1 and x2 in X . Then for
the function defined by g(d) = c · d, it is easy to verify that f is g-Lipschitz
continuous. Thus g can be used to thin-out candidates without errors. Since c
itself is unavailable in practice, we substitute the maximum gradient from every
two points in past trials so far, which will become a good approximation of c
after enough trials. We call it Max Gradient (MG) method. This method may
have small error rate, because it deals with the worst case scenario. However,
it can hardly thin-out candidates in rough score functions obviously, since the
estimated value of the Lipschitz function is too conservative in many cases.

Gathering Differences Method

Meta-heuristics picks up many samples from an interesting region expected to
have the best score. We can get the shape of the interesting region by using
information of points which are densely packed in past trials so far. Thus we infer
Lipschitz functions by gathering the differences of the scores, from the smallest
one in ascending order of the distance between the points, until the summation
of the distances become greater than the distance between xc and xn, as shown
in Algorithm 1. It will become a good approximation after enough trials, since
a line connecting fairly close two points can approximate the gradient of the
function nearby the points. We call it Gathering Differences (GD) method. This
method can thin-out many candidates, since it may infer the local shape of the
score function in the interesting region. However, it may wrongly thin-out them,
because it is just heuristics and does not have any theoretical propriety.

3 Performance Evaluation of Thinning-out

We need efficient sampling methods for picking up candidates, since our thinning-
out method in the previous section just skips over the candidates. In this paper,
we utilize Genetic Algorithm (GA), which is one of the meta-heuristics methods,
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Algorithm 1: Gathering differences method

input : distance and the set Hist of pairs (x, f(x)) observed so far
output : An inferred value of the Lipschitz function g(distance)

initialize Diff as a map from R to R;
foreach x1, f(x1) in Hist do

foreach x2, f(x2) in Hist do
Diff [d(x1, x2)]← |f(x1)− f(x2)|;

end

end

sum diff point ← 0;
sum diff score ← 0;
foreach diff point, diff score in Diff in ascending order w.r.t. diff point do

sum diff point ← sum diff point + diff point ;
sum diff score ← sum diff score + diff score ;
if sum diff point ≥ distance then

return sum diff score ;
end

end

return ∞ ;

Algorithm 2: Evaluation of a candidate with thinning-out.

input : candidate

output : score

while candidate satisfies the thinning-out condition do
candidate ← a random perturbation of candidate ;

end

score ← Evaluate(candidate);
return score ;

because we intend to address discovery problems in which the score function is
unknown. We can combine GA and thinning-out by designing the evaluation
function of a candidate as shown in Algorithm 2. Since thinning-out is meta
strategy, we can easily utilize other meta-heuristics methods in the same way
as GA. Although we have experimented other methods such as hill climbing,
simulated annealing, and policy gradient and verified that they worked well
with thinning-out, we omitted them here because of space limitations.

We use the minimization problem of mathematical test functions for verifying
the performance of our thinning-out method. The evaluation by test functions
is commonly performed for verifying the performance of meta-heuristics. In this
paper, we use Rastrigin, Schwefel, Griewank, Rosenbrock, and Ridge functions,
which are used by Hiroyasu et al. [9]. In addition, we add Ackley function [10],
because we think our thinning-out method is not good at the function with deep
rapid valleys. Characteristics of these functions are as follows. Rastrigin, Schwe-
fel, Griewank, and Ackley functions have multiple peaks, although Griewank and
Ackley functions have a single peak with a global view. Griewank, Rosenbrock
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Fig. 1. The shape of test functions in 2 dimensions

and Ridge functions have the design variables’ dependency. Fig. 1 shows the
shapes of these functions in 2 dimensions.

We compared the performance of our methods by three different viewpoints:
the kind of test functions, the number of candidates, and the dimension of test
functions. In each experiment, the step size parameter (for mutation and pertur-
bation) of GA is 1% of the domain size of each dimension. We used ǫ-thinning-out

in the same way as ǫ-greedy in reinforcement learning [11], because our methods
can not always thin-out candidates safely. ǫ-thinning-out evaluates a candidate
with probability ǫ, and otherwise, it skips over the candidate. Consequently,
ǫ-thinning-out can hold out the possibility for evaluating candidates that are
wrongly thinned-out once and avoid never halting by thinning-out all candi-
dates. We set ǫ = 0.01.

Firstly, we compared the performance by the kind of test functions. Table 1
shows thinning-out rate and error rate of GA+MG and GA+GD in each test
function. The thinning-out rate means the rate of thinned-out candidates in all
candidates, and the error rate means the rate of wrongly thinned-out candidates
in thinned-out candidates. Both MG and GD totally reduced the number of tri-
als by more than 70 % with low error rates. As anticipated, both MG and GD
have slightly higher error rates in Ackley function. Table 2 shows the results
of minimization by GA, GA+MG, and GA+GD. Both GA+MG and GA+GD
always got better results than GA in all test functions. This is because a small
number of errors (i.e., wrongly thinned-out candidates) will not affect final re-
sults as shown in Fig. 2. Contrary to our expectation, these tables indicate that
the thinning-out rate of MG is higher than that of GD. The later experiment,
however, finds that the thinning-out rate of GD is higher than that of MG in
higher dimensions.

Secondly, we compared the performance by the number of candidates. Fig. 3
shows the relationship between the number of trials and that of candidates.
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Table 1. Thinning-out rate and error rate of GA+MG and GA+GD in 6 test functions
in 2 dimensions. Each rate is the average over 100 experiments using 100 candidates.

function
GA+MG GA+GD

thinning (%) error (%) thinning (%) error (%)

Rastrigin 81.47 0.23 78.60 1.99

Schwefel 82.98 0.18 78.97 1.42

Griewank 82.82 0.24 78.98 1.01

Rosenbrock 82.23 0.05 78.71 0.69

Ridge 81.89 0.00 80.40 0.75

Ackley 79.91 2.77 71.48 2.94

Table 2. Results of minimization by GA, GA+MG, and GA+GD in 6 test functions
in 2 dimensions. Each result means the minimum score of 50 actual trials and is the
average over 100 experiments.

function GA GA+MG GA+GD

Rastrigin 24 13 19

Schwefel 712 435 439

Griewank 43 32 33

Rosenbrock 418 330 296

Ridge 11542427 8233764 8878178

Ackley 19 18 18

The graph indicates that the thinning-out rate gets higher as the number of
candidates gets larger. For example, the results of 80 trials by both GA+MG
and GA+GD is almost the same as that of 210 = 1024 trials by GA, if there are
no critical errors. We theoretically analyzed the number of trials with respect to
the number of candidates for a simplified case. For a score function f(x) = x, let
nc be the number of candidates by random search. Then the number of trials is
reduced to O(log(nc)) by our thinning-out method. If we can prove it in more
practical functions (e.g., f(x) = xn), the result has practical significance, because
random sampling with thinning-out worked better than GA in low dimensions.
In this paper, we picked up GA since random search can hardly suggest good
candidates in high dimensions.

Finally, we compared the performance by the dimension of test functions.
Table 3 shows thinning-out rate and error rate of GA+MG and GA+GD in
various dimensions. The table indicates that MG can hardly thin-out the large
number of candidates in high dimensions. On the other hand, GD can also thin-
out almost the same number of candidates in high dimensions as that in low
dimensions. This result indicates that GD is better than MG in high dimensions,
if there are no critical errors. In the next section, we show that there are no
critical errors in our intended problem, skill discovery.
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Fig. 2. This graph shows an example of minimization process with thinning-out. The
example is in an experiment using 1000 candidates in 2 dimensional Rastrigin func-
tion. Circles, triangles, and crosses represent actually evaluated candidates, success-
fully thinned-out candidates, and wrongly thinned-out candidates, respectively. The
dashed line indicates the same number of candidates as actual trials with thinning-out.
The minimum score in the left side of the line means the minimization result without
thinning-out.

Table 3. Thinning-out rate and error rate of GA+MG and GA+GD in Rastrigin func-
tion in 2, 5, 10, 50, and 100 dimensions. Each rate is the average over 100 experiments
using 100 candidates.

dimension
GA+MG GA+GD

thinning (%) error (%) thinning (%) error (%)

2 82.07 0.41 77.44 2.44

5 59.83 0.16 77.26 4.08

10 45.52 0.12 75.08 5.09

50 35.23 0.19 70.84 6.89

100 35.70 0.13 69.89 6.12
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Fig. 3. This graph shows the number of actual trials over the number of candidates
by GA+MG and GA+GD in Rastrigin function in 2 dimensions. Each result is the
average over 10 experiments.

4 Discovery of Good Shot Motions

4.1 Creation of Initial Motions

In this paper, we use AIBO, which was developed by Sony Corporation, as a
legged robot. Physical motions of AIBO are realized by sending frames, consist-
ing of the 15 joint angles for its head and legs, to OVirtualRobot every 8 ms.
OVirtualRobot is a kind of proxy object that is defined in the software develop-
ment kit OPEN-R for AIBO. In our framework, these frames are generated from
key-frames. The key-frames are the characteristic frames shaping the skeleton of
each motion. For example, a kick motion needs at least two key-frames, since
robots must pull and push its leg when executing it. We indicate the number
of interpolations for each key-frame, so that whole frames can be generated by
using a linear interpolation method. Thus, our motion takes 8ni ms, where ni is
the total number of interpolations.

4.2 Discovery Process

We directly utilize the key-frames for discovering good shot motions. All we do is
to create sketchy motions, that is to indicate the key frames for the motion, and
it is possible to realize flexible search in the neighborhood of the skeleton without
modeling the movement and setting extra-parameterization. We fix the number
of key-frames and interpolations. In other words, the search space of our discov-
ery process has 15nk-dimensions, where nk means the number of key-frames. In
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Table 4. Results of discovery of good motions by GA, GA+MG, and GA+GD. Each
result means the maximum score of 50 actual trials and is the average of 10 experiments.

GA GA+MG GA+GD

936 940 1058

the process, we sample x ∈ R
15nk , make our robot perform a shot motion gener-

ated from x, and calculate scores as the formula rb · (1 − |θt − θb| /θc), where rb

and θb mean the distance and angle to the kicked ball, and θt means the target
direction for shots. The formula linearly reduces the value in inverse proportion
to the difference between θb and θt. θc is a constant for the degree of reducing,
and we set θc = π/4.

4.3 Experiments and Results

We applied our methods to discovery of good shot motions by legged robots
in a simulation environment. We slightly extended the 3D simulator developed
by Zaratti et al. [12] and used it. Although this simulator can absolutely not
produce complete, real environments, it is suitable for verifying the performance
of such new methods, because we can perform reproducible measurement without
annoying real noise, as well as without damaging our robots.

Our experiments require much more time since the simulation of physical mo-
tions itself requires complex computation, even though our discovery processes
lies in the simulator. Actually, each experiment in this section took a couple
dozens hours. Therefore, thinning-out can make discovery processes more effi-
cient in a simulation environment as well as real environments, because it can
reduce time-consuming trials themselves.

We experimented using the motion for shooting a ball to a left oblique di-
rection with its right leg, as an initial motion. The search space is 75(= 15
joint angles * 5 key frames)-dimensions. The step size parameter of GA is
π/36 in each dimension. Table 4 shows the results using GA, GA+MG and
GA+GD. The table indicates that GA+GD get better results than GA and
GA+MG. Although the difference is small, it should be noted that GA+GD
used several hundred candidates. In other words, the result of GA+GD is al-
most the same result of several hundred trials in GA. The result ought to be
improved by using a better sampling method. Fig. 4 shows the initial motion
and two better motions which were discovered by using our methods. The mo-
tion (b) uses its whole body, although the initial motion (a) uses almost only
its right leg. The motion (c) uses its own weight, swinging down its right leg.
It should be noted that the motion (c) is much different from the initial mo-
tion (a). This result can not be achieved by modeling the initial motion and
adjusting the parameters of the model. These results, especially the motion (c),
indicate that our skill discovery method with key-frames has flexibility suitable
for practical use. The movies of these discovered motions are available online
(http://www.shino.ecei.tohoku.ac.jp/˜kobayashi/movies.html).
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(a) Initial motion

(b) Discovered motion using its whole body

(c) Discovered motion using its own weight

Fig. 4. Initial motion and discovered motions.

5 Conclusions and Future Work

In this paper, we proposed the concept “thinning-out”, which is effective for
the problems that take much more evaluation time in each trial. We proposed
two methods (MG and GD), which infer Lipschitz functions for thinning-out.
By the experiments on the minimization problem of several test functions, we
verified that MG can safely thin-out few candidates, and conversely GD can
fearlessly thin-out many candidates, especially in high dimensions. The results
of test functions also suggests that thinning-out can be utilized widely in other
different problems. In addition, we applied our methods to discovery of good
shot motions by legged robots in a simulation environment. Our virtual robots
discovered sophisticated motions that is much different from the initial motion
in a feasible number of trials.

From now on, the experiments using real robots will be needed to verify that
thinning-out can treat real noise. Discovery of good shot motions in real envi-
ronments, however, will be unrealistic, because we must estimate the distance
to the kicked ball and restore the ball to the initial point carefully with each
trial for themselves. Therefore, we plan to make our robots perform autonomous

learning in the same way as Kobayashi et al. [6]. Autonomous learning of forward
shots is readily achievable in much the same way as the method of them, and
that of other shots may be possible by utilizing ceiling cameras.

We also need to more accurate inference methods for Lipschitz functions,
because the two methods proposed in this paper have both merits and demerits.
Although we came up with several ideas, which include a method using the
average, median, and weighted average of gradients, other than the two methods,
they did not work well. For example, we may be able to infer more proper values
by utilizing heuristics depending on each problem.
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