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Abstract. This paper describes an autonomous learning method used with real
robots in order to acquire ball passing skills in the RoboCup standard platform
league. These skills involve precisely moving and stopping a ball to a certain ob-
jective area and are essential to realizing sophisticated cooperative strategy. More-
over, we propose a hybrid method using “thinning-out” and “surrogate functions”
in order to reduce actual trials regarded as unnecessary or unpromising. We ver-
ify the performance of our method using the minimization problems of several test
functions, and then we address the learning problem of ball passing skills on real
robots, which is also the first application of thinning-out on real environments.

Keywords. Autonomous Learning, Four-legged Robot, RoboCup,

1. Introduction

For robots to function in the real world, they need the abilities to adapt to unknown
environments, that islearningabilities. In particular, legged robots must acquire or learn
many basic skills such as walking, running, pushing, pulling, kicking, and so on, in order
to accomplish sophisticated behaviors such as playing soccer. In this paper, we address
the learning of ball passing skills by four-legged robots as an instance of basic skills.
Ball passing skills are used in RoboCup2 and are essential to realizing sophisticated
cooperative strategy.

We regard learning as optimization of an unknown score functionf : X → R on an
n-dimensional search spaceX ⊆ Rn, i.e.minx∈X f(x) or maxx∈X f(x). In the case of
robot learning, we must usually treat a noisy, high-dimensional, nonlinear function. Al-
though such functions are surely difficult to optimize, it is more serious from a practical
standpoint that eachtrial , which means evaluation of the function for a sampled point
x ∈ X, brings the following various costs.

• Servo motors are damaged, and so robots themselves can be broken easily.

1Corresponding Author: Hayato Kobayashi; E-mail: kobayashi@shino.ecei.tohoku.ac.jp.
2RoboCup [1] is a competition for autonomous robots which play soccer and also an interesting and chal-

lenging research domain, because it has a noisy, incomplete, real-time, multi-agent environment.



• Human resources are often needed, e.g., we must restore a kicked ball for the next
trial.

• It obviously takes more time compared to computations being done only on PCs.

There are two approaches in order to reduce those costs. One is an approach from
experimental methodology, and the other is an approach from machine learning.

Approach from experimental methodology

Experiments in simulation environments are useful in the sense that each trial does not
damage robots nor need human resources. Zagal and Solar [2] studied the learning of
ball shooting skills by four-legged robots in a simulation environment. Kobayashi et
al. [3] also studied the similar learning problem in another simulation environment and
discovered sophisticated shooting motions. However, since simulation environments can
not produce complete, real environments, we need to train robots in the real environment
where basic skills heavily depend on complex physical interactions.

In experiments with real robots,autonomous learning, by which robots acquire some
skills on their own without human intervention, is practically efficient, especially in envi-
ronments that change frequently, such as RoboCup competitions. There have been many
studies conducted on the autonomous learning of quadrupedal locomotion [4,5,6,7],
which is the most basic skill for every movement. However, the skills used to control
the ball are often coded by hand and have not been studied as much as quadrupedal
locomotion. Fidelman and Stone [8] presented an autonomous learning method of ball
acquisition skills that involves controlling a stopped ball by utilizing chest PSD sen-
sors. Kobayashi et al. [9] studied the reinforcement learning to trap a moving ball au-
tonomously. The goal of the learning was to acquire a good timing to initiate its trap-
ping motion, depending on the distance and the speed of the ball, whose movement was
restricted to one dimension.

Approach from machine learning

Memory-based learningis often utilized in robot learning, since the number of trials
are highly restricted, which are up to and at most several hundred trials in many cases.
Memory-based learning stores past evaluations in history and samples a new promis-
ing point based on the history. In memory-based learning, we can efficiently reduce the
number of trials, even if computational complexity of the algorithm is too large.

Sano et al. [10] proposed Memory-based Fitness Evaluation GA (MFEGA) for noisy
environments. They estimated more proper scores (or fitness values) by the weighted av-
erage of neighboring scores, so as to reduce the number of trials compared to multiple
sampling methods, which evaluates a score function several times in each trial. Ratle [11]
proposed an acceleration method of GA by utilizingsurrogate functions, which are ap-
proximation models of original score functions. He chose kriging interpolation as surro-
gate functions and used it for evaluating some of the next generations. In our previous
work [3], we took another approach for reducing the number of trials, based on the idea
that it is able to theoretically determine whether or not selected points are worth evaluat-
ing if score functions areg-Lipschitz continuous described in Section 3.1. If a sampled
point is unlikely to improve the results obtained so far, the trial for the point is not per-
formed and just skipped over. We call this methodthinning-outin search seedlings (or



candidates), which contrasts topruningin a search tree. One advantage of our method is
that it is guaranteed to thin-out unnecessary candidates without any errors, if we know
a proper Lipschitz functiong. We can arbitrarily prepare the functiong depending on
the problems to be solved and also infer the functiong for complex problems that are
difficult for us to come up with it.

In this paper we propose an autonomous learning method of ball passing skills as
an approach from experimental methodology as well as a hybrid method using thinning-
out and surrogate functions as an approach from machine learning. This work is also
important as the first application of thinning-out in the real world.

The remainder of this paper is organized as follows. In Section 2, we begin by il-
lustrating the execution mechanism of passing motions and our training equipment for
autonomous learning, and then formalizing our learning problem. In Section 3, we illus-
trate our proposed method and describe existing thinning-out and kriging interpolation
utilized as a surrogate function. In Section 4, we apply the proposed method for the min-
imization of several mathematical test functions and learning of ball passing skills by
four-legged robots. Finally, Section 5 presents our conclusions.

2. Preliminaries

2.1. Passing Motion

Ball passing is realized by accurate shooting motions that precisely move and stop a
ball to an objective area, such as where a teammate is waiting. In this paper, we use
AIBO as a legged robot, which is one of the robots permitted for use in the standard
platform league in RoboCup. Shooting motions of AIBO are achieved by sendingframes,
consisting of the 15 joint angles for its head and legs, to OVirtualRobot every 8 ms.
OVirtualRobot is a kind of proxy object that is defined in the software development
kit OPEN-R for AIBO. In our framework, these frames are generated fromkey-frames,
which are characteristic frames shaping the skeleton of each motion. For example, a
kick motion needs at least two key-frames, since robots must pull and push its leg when
executing it. We indicate the number of interpolations for each key-frame, so that whole
frames can be generated by using a linear interpolation method. Thus, our motion takes
8ni ms, whereni is the total number of interpolations.

2.2. Training Equipment

Acquiring passing skills autonomously is usually difficult, because robots must be able
to search for a kicked ball and then move the ball to an initial position. This requires so-
phisticated, low-level programs, such as an accurate, self-localization system, a ball ac-
quiring skill, and a movement behavior with holding the ball. In order to avoid additional
complications, we simplify the learning process a bit more. We can restrict ball passing
to an anterior direction since our robot has rotational locomotion with holding the ball
and can pass omni-directionally using only a forward passing motion. In other words,
we can ideally treat our problem, which is to learn passing skills, one-dimensionally. In
actuality though, the problem cannot be fully viewed in one-dimension because the ball
might curve a little due to the grain of the grass.



Figure 1. Training equipment for learning passing skills.

For autonomous learning of passing skills in one-dimension, we prepared almost
the same training equipment as our previous work [9] as shown in Fig. 1. The equipment
has rails of width nearly equal to an AIBO’s shoulder-width. These rails are made of
thin rope or string, and their purpose is to restrict the movement of the ball as well as
the quadrupedal locomotion of the robot, to one-dimension. At the edge of these rails,
there is a goal flag that shows the objective position of a passed ball. A slope just behind
the flag can return the ball when passing is too strong, in the same way as an “automatic
golf putting machine”. Without the slope, the kicked ball would go beyond the objective
position when the robot kicked it too strong, and it would take too much time for the
robot to return the ball to the initial position where the robot first kicked it. Using the
equipment, our robots can simply learn passing skills autonomously by kicking the ball
straightforward and measuring the distance of the kicked ball on their own.

2.3. Problem Formulation

We directly utilize key-frames for learning of passing skills. It is possible to realize flex-
ible search in the neighborhood of the skeleton without modeling the movement and set-
ting extra-parametrization. All we do is create a sketchy motion as an initial motion, i.e.,
to indicate the key-frames for the motion. By adjusting the values of the key-frames of
the initial motion, our robots learn an appropriate shooting motion, which is neither too
strong nor too weak, so that the kicked ball will stop at an objective position.

We can apply the mirroring technique in the same way as Latzke et al. [12], since
shooting motions are restricted to an anterior direction. In the mirrored situation, we can
identify the angles of its right legs with those of its left legs and regard the horizontal
“pan” angle of its neck as zero, although AIBO has 15 joint angles for its head and legs.
As a consequence, the search space of the learning has8nk-dimensions, wherenk means
the number of key-frames.

Our learning is formalized as a maximization of a score functionf : X → R on an
8nk-dimensional search spaceX ⊆ R8nk . The valuef(x) expresses the goodness of the
shooting motion specified by motion parametersx ∈ X, that is, how closely the kicked
ball stops at the objective position. The score is experimentally evaluated as follows:



First make our robot kick the ball by performing the motion, and then make the robot
measure the distancedball from the robot to the point where the ball actually stopped.
Since it obviously contains some noise in real environments, we treat the mediand̂ball
of 5 executions of the trials for eachx as the scoref(x) = d̂ball. The score has the
maximum valueDgoal, which is the distance from the robot to the objective position
shown by the goal flag in Fig. 1, because the ball will be returned back to the robot by
the slope just behind the goal flag if it is kicked too strong. Moreover, for a constant
Dbounce, we regard the score as zero if the returned ball is stopped within the distance
Dbounce, because the ball might bounce off of its chest, and the estimated distance might
be erroneous. In this paper, we setDgoal = 800 mm andDbounce= 300 mm.

The distance 800 mm is used as the nearest distance between robots in the passing
challenge, which was one of the technical challenges in the RoboCup four-legged league
in 2007.

3. Learning Method

The score function in the previous section is obviously unknown, and so we utilize meta-
heuristics for addressing maximization of the function. Meta-heuristics means heuristic
algorithms that are independent of problems, such as Genetic Algorithm (GA), Simu-
lated Annealing (SA), and Hill Climbing (HC). In this paper, we choose GA that was
successfully utilized for the learning of shot motions by virtual four-legged robots in
Kobayashi et al. [3].

For reducing the number of trials of robot learning, we utilizethinning-out, which
will be described in Section 3.1. Thinning-out can judge whether or not a point sampled
by meta-heuristics is promising according to the history of past trials. For the sake of
discussion for now, we describe a point sampled by GA as acandidate. If a sampled
candidate is regarded as unpromising, we can thin-out (or skip over) the candidate with-
out evaluating it. In meta-heuristics with thinning-out only, when a sampled candidate
is thinned-out a new candidate is simply resampled with random perturbation, i.e. muta-
tion in GA, as shown by the left of Fig. 2. Therefore, samples with lower scores tend to
be evaluated even in a later phase of learning, since samples in an unknown area where
candidates have not been sampled yet can be regarded as promising. In order to make the
resampling process more efficient, we propose a new method combined with a surrogate
function f̂(x), which is an approximation model off(x). In this method, when a sam-
pled candidate is thinned-out, the candidate is evaluated by the surrogate function instead
of the original score function, and a new candidate is resampled by meta-heuristics, as
shown by the right of Fig. 2. In this paper, we utilize kriging interpolation, which will
be described in Section 3.2, as a surrogate function. We anticipate that the method has
the advantage of accelerating the learning process, since meta-heuristics may be more
efficient than random perturbation, and the disadvantage of increasing the possibility of
convergence to a local optima, since the surrogate function might be wrongly approxi-
mated.

3.1. Thinning-out

In this section, we formalize our thinning-out technique for reducing unnecessary or
unpromising trials. First, we assume that our score function is continuous and, to some



Figure 2. The left figure shows the concept of thinning-out only, and the right figure shows the concept of
thinning-out with surrogate functions. When a sampled candidate is thinned-out, the former resamples a new
candidate, while the latter evaluates a surrogate function instead of a score function.

extent, smooth over the search space. Our assumption seems to be reasonable, because
each robot’s movement is continuous, and thus small changes of parameters will not
affect the score significantly. Based on this assumption, we can find out unpromising
candidates theoretically by utilizing the degree of smoothness of the score function.

Now we define the local smoothness of the score function in terms of Lipschitz con-
dition, which is found in standard textbooks on calculus. We useg-Lipschitz continuous
for some functiong, as a natural extension ofc-Lipschitz continuous for some constant
c in textbooks.

Definition 3.1 (Lipschitz condition) Let R be the set of real numbers, X be a metric
space with a metricd, andf : X → R be a function on it. Given a functiong : R → R,
f is said to beg-Lipschitz continuous, if it holds for anyx1, x2 ∈ X that

|f(x1) − f(x2)| ≤ g(d(x1, x2)).

The functiong is calledLipschitz function.

From now on, we used as the Euclidean metric. Supposing that a score functionf
is g-Lipschitz continuous, if a candidate satisfies the following thinning-out condition,
it is guaranteed to safely thin-out the candidate, which will never become better than the
current best score.

Definition 3.2 (Thinning-out condition) Letxb be the point with the current best score
f(xb), xc be a candidate point to try, andxn be the nearest neighbor of the candidate.
Given a Lipschitz functiong : R → R, xc is said tosatisfy the thinning-out condition
with respect tog, if it holds that

f(xn) + g(d(xc, xn)) ≤ f(xb).

Since a Lipschitz functiong is often not given in practical problems, we need infer
the functiong from the history of past trials. The naïve inferring method is Max Gradient
(MG) method, which is defined byg(x) = cx utilizing the maximum valuec in the
gradients between any two points in the history. We also proposed Gradient Differences
(GD) inferring method. GD is intuitively a weighted average method of gradients of the
score function using weights based on the inverse of the distance between any two points



in the history of past evaluations. It will become a good approximation after enough
evaluations, since a line connecting two close points can approximate the gradient of the
function nearby the points.

3.2. Kriging Interpolation

Kriging [13] is one of the function interpolation or approximation methods of an un-
known real functionf , which is initially developed in geostatistics, and recently, many
researchers successfully utilized kriging as a model of surrogate functions. Although
there are several types of kriging, we chooseordinary krigingthat is the most commonly
used type of kriging. In ordinary kriging, its interpolator̂f at a pointx∗ is represented
by a weighted linear combination as follows,

f̂(x∗) =
n∑

i=1

wif(xi),

wheref(x1), ..., f(xn) are the observed values of the function at some other points
x1, ..., xn. In order to estimate the weightsw1, ..., wn, we assumes that the observed
values are the realization of a stochastic process withsecond-order stationarity, which
means that the expected values are constants, i.e.,E[f(xi)− f(xj)] = 0, and the covari-
ances are dependent only on the distances, i.e.,Cov[f(xi), f(xj)] = C(d(xi, xj)). The
functionC is called acovariance functionand describes a correlation between any two
points in terms of the distance. In this paper, we defineC(x) = σ2 exp(−θx2) utilizing
an isotropic Gaussian function, whereσ2(= C(0)) is the varianceVar[f(xi)], based on
the heuristics that the closer points correlate outputs more positively.

The weights forx∗ is chosen such that the error varianceVe = Var(f̂(x∗) − f(x∗))
is minimized subject to

∑n
i=1 wi = 1, which is given by the unbiased condition of the

interpolator, i.e.,E[f̂(x∗) − f(x)] = 0, and the property of second-order stationarity.
Utilizing a Lagrange multiplierλ, we can solve it by settingV ′

e = Ve +2λ(
∑n

i=1 wi−1)
and calculating ∂

∂wi
V ′

e = 0. Thus, the weights are given by the followingn+1 equations.{∑n
i=1 wiC(d(xi, xj)) + λ = C(d(xi, x

∗)) for j = 1, ..., n,∑n
i=1 wi = 1.

4. Experiments and Results

4.1. Minimization of Test Functions

For verifying the performance of our proposed method, we first address the minimiza-
tion of the 6 mathematical test functions, Rastrigin, Schwefel, Griewank, Rosenbrock,
Ridge, and Ackley. They have often been used for the performance evaluations of meta-
heuristics and are also utilized in Kobayashi et al. [3]. Rastrigin, Schwefel, Griewank,
and Ackley have multiple peaks, although Griewank and Ackley have a single peak with
a global view. Griewank, Rosenbrock and Ridge have the design variables’ dependency.

In this section, SGA means a simple, real-coded GA with uniform crossover, whose
rate is 0.3, Gaussian mutation with mean of 0 and variance of 10% of the domain size
of each dimension, whose rate is 0.2, and roulette selection with elite strategy, and its



Table 1. This table shows the minimization results of 10-dimensional 6 test functions by SGA, GAT and
GATS. Where, “min”, “trial”, and “error” represent the minimum scores in 100 trials, the trial rates in 100 can-
didates, and the error rates in 100 candidates, respectively. The trial rate means 100×#(tried candidates)/ #(all
candidates), and error rate means 100×#(wrongly thinned-out candidates)/#(all thinned-out candidates). Each
value is the average over 100 experiments. As for GA, the trial rates and error rates are 100% and 0% (or
undefined), respectively.

function
SGA GAT proposed GATS

min min trial (%) error (%) min trial (%) error (%)

Rastrigin 260 165 54.20 0.80 152 38.67 0.40

Schwefel 3583 1817 62.84 0.87 1305 42.63 0.17

Griewank 621 211 48.24 0.09 112 35.81 0.00

Rosenbrock 17472 3326 54.75 0.06 2265 39.34 0.00

Ridge 5.7e9 6.4e8 55.42 0.04 2.3e8 38.58 0.00

Ackley 21 21 60.37 0.92 21 43.26 0.05

population size is 20. GAT means SGA withϵ-thinning-out, whereϵ = 0.01, with MG
inferring method.ϵ-thinning-out forcibly evaluates a candidate with probabilityϵ, and
otherwise, it skips over the candidate, so that it can hold out the possibility for evaluating
candidates that are wrongly thinned-out once and avoid never halting by thinning-out all
candidates. GATS means our proposed method, that is GAT with a surrogate function of
ordinary kriging interpolation described in Section 3.2. The parameterθ of the covariance
function is estimated by maximum likelihood estimation.

Table 1 shows the minimum scores, trial rates, and error rates of SGA, GAT, and
GATS. The trial rate means the rate of tried candidates in all candidates, and the error rate
means the rate of wrongly thinned-out candidates, whose scores (calculated by only for
the error rate) were actually better than the current best score, in thinned-out candidates.
Wrongly thinned-out candidates are examined by calculating thinned-out scores only for
error rate. Note that even if candidates are thinned-out at random, the error rate becomes
very small. All values of the minimum scores, trial rates, and error rates become better, as
they become smaller. This section focuses on the comparison between GAT and GATS,
since the comparison between SGA and GAT was already discussed in Kobayashi et
al. [3]. As for GATS, we anticipated that the trial rates become higher, and the error
rate become lower, because the efficient resampling method should choose promising
candidates that can not be thinned-out. However, against our anticipation, the trial rate
of GATS is lower than those of GAT, while, as expected, the error rates of GATS are
lower than those of GAT. This was because evaluated points with good scores should
make easy situations to thin-out new sampled candidates, although GATS surely tends to
evaluate resampled candidates. Consequently, the fact that both trial rates and error rates
are decreased leads to the good result that the minimum scores of GATS are better than
those of GAT over all test functions.

4.2. Learning of Passing Skills

In this section, we address the learning of ball passing by four-legged robots, i.e., maxi-
mization of the score function formalized by Section 2.3. SGA, GAT, and GATS are al-
most the same in the previous section. The only following parameters are different. SGA
utilizes discrete mutation, which randomly adds one from{−r, 0, +r} in each dimen-



sion, wherer = π/36 radians, and the population size is 10. GAT utilizes GD inferring
method, which was effective for score functions over high dimensional spaces in our
previous experiments [3].

The initial motion for learning is a motion of pushing a ball with its chest, which is
actually used as a shooting motion in games in RoboCup. The motion is performed not
only by moving the chest ahead, but also by moving the whole body so as to enhance
the power of the shot. As the shooting motion involves the movement of almost all joint
parts of the robot, it is not easy to even adjust the motion. Therefore, it is quite difficult
for humans to design the shooting motion so that the ball goes to the objective position.
The motion takes 482 ms because it has 54 total interpolations (ni = 54), and can move
the ball to approximately 1500 mm. Since the motion consists of 6 key-frames (nk = 6),
the search space of this learning problem is 48-dimensions.

Fig. 3 shows a comparison of the learning processes obtained by running SGA, GAT,
and GATS for 50 trials. Unlike the previous experiment, the scores on these processes
become better, as they become higher. Since the score of each trial is calculated by the
median of 5 motion executions, our robot, in fact, needs 250 motion executions in total
for 50 trials. Each experiment took more than 3 hours, and we must have exchanged more
than 6 batteries since our robot needs one battery every 30 minutes. The figure indicates
that GATS and GAT are obviously more efficient than SGA, and GATS seems to be
slightly better than GAT. Unfortunately, we could not conduct any more experiments,
since we realized that the learning of shooting motions damages or breaks servo motors
of robots more frequently than expected. At least in this section, however, we could
verify that our thinning-out method was successfully applied to the learning problem in
the real world for the first time. Our robot finally acquired the best score 777 by utilizing
GATS, which means an accuracy of 23 mm, since the target distance is 800 mm in this
experiment. The acquired motion was not much different from the initial motion. The
fact implies that the adjustment of passing motions is difficult for humans. All movies of
the earlier and later phases of our experiments are available on-line3.

5. Conclusions and Future Work

In this paper, we proposed an autonomous learning method of ball passing skills and a hy-
brid method using thinning-out and surrogate functions. The former realizes that robots
learn ball passing skills without human intervention, except for replacing discharged bat-
teries. The latter reduces the number of trials efficiently with few errors and improves the
result of learning. By using the proposed two methods, our robot successfully acquired
an appropriate passing motion with an accuracy of 23 mm on their own. Our experiments
were also the first application of thinning-out in the real world.

Future work includes extending passing skills into two-dimensions and toward arbi-
trary objective distances. We can acquire more practical passing skills by replacing the
score function with a new score function that refers the average (or median) and variance
of the position of each kicked ball in two-dimensions. We can also acquire more flexible
passing skills by utilizing the interpolation of some passing motions.

3http://www.shino.ecei.tohoku.ac.jp/~kobayashi/movies.html#passing
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Figure 3. Learning processes of SGA, GAT, and GATS in terms of trials. The solid line, dashed line, and
dotted line show the learning processes of GATS, GAT, and SGA, respectively. Each point means the average
of each population, e.g. 10 trials.
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