
Jolly Pochie 2006 : Team Description Paper

Hayato Kobayashi1, Akira Ishino2, and Ayumi Shinohara3

1 Department of Informatics, Kyushu University
h-koba@i.kyushu-u.ac.jp

2 Office for Information of University Evaluation, Kyushu University
ishino@i.kyushu-u.ac.jp

3 Graduate School of Information Science, Tohoku University
ayumi@ecei.tohoku.ac.jp

1 Introduction

The team “Jolly Pochie [dz̧óli·pót
∫
i:]” has participated in RoboCup Four-Legged

League since 2003. In the first two years, the team consisted of the faculty
staff and graduate/undergraduate students of department of informatics, Kyushu
University. Since 2005, it becomes a united team with Tohoku University.

Faculty members
Ayumi Shinohara, Akira Ishino

Student members
Hayato Kobayashi, Satoshi Abe, Akihiro Kamiya, Tsugutoyo Osaki, Tetsuro
Okuyama, Shuhei Yanagimachi, Keisuke Oi, Wataru Matsubara, Takahito
Sasaki, Tomoyuki Nakamura, Seiji Hirama, Eric Williams

Our research interests mainly include machine learning, machine discovery, data
mining, image processing, string processing, software architecture, visualization,
and so on. RoboCup is a suitable benchmark problem for these domains. Last
year, we had utilized an scripting language in order to accelerate the development
process, and developed a simulator which directly executes scripts on PC just as
in the robots. In addition, we have developed a new localization technique for the
ball location. Moreover, we have tried to apply an autonomous learning method
into real robots in order to acquire ball trapping skills. This paper presents our
current status of the development, mainly focused on the progress since the last
year. Section 2 introduces our original framework. In Section 3, we give outline
of our image processing system. Section 4 shows the ball localization techniques.
We show how to learn ball trapping skills in Section 5.

2 Overview of Our Framework

Our framework [1] is mainly based on two techniques. One is the plug-in system,
and the other is embedding a scripting language. The plug-in system helps the
development by allowing several programmers to collaborate. We can simplify
each task by splitting a huge, complex process into individual functions. Embed-
ding a scripting language helps us eliminate the trial and error process and the

JPMindModule JPCameraModule JPActionModule JPSensorModule JPUDPModule JPTCPModule

OPEN-R

Core Program

Base Program

MindModule CameraModule ActionModule SensorModule1 SensorModule2

Lua Script

Concrete Modules

Abstract Modules

The occured events is allotted to the modules.

Scripts can already access the available methods of the modules.

We can plug the modules that we want to use into the base program.

Fig. 1. The overview of our framework.

time it demanded. By making high-level scripts that do not need to recompile,
our tasks can progress more efficiently.

Figure 1 shows some features of our framework. This is the programming pro-
cedure in our framework. We first separately create each low-level module. Then,
we select some modules that we want to use, and plug the selected modules into
the base program. For example, we would select a vision module, a localization
module, a motion module, and so on, to make a robot that plays soccer. The
robot program is generated easily by an automation tool for this procedure. We
can build a binary program by compiling this robot program. Finally, we can
write scripts for performing high-level processes by using the methods defined
in the modules. In order to replace certain modules with others, once again, we
only need to select modules, generate a program, and compile it. Nevertheless,
we need not rewrite the script.

2.1 Plug-in System

Our plug-in system consists of a base program and individual modules. The base
program is the foundation of this system and common to all the robot programs.
Concretely speaking, it is composed of classes wrapping the OPEN-R SDK. The
most important class in the base program is a class JPObject, which inherits
the class OObject in OPEN-R SDK. We create a robot program for AIBO by

Table 1. The specifications of special functions.

Module Special Function When is the function called?

JPCameraModule cameraNotify() Every 40 ms in sync with the CCD-camera

JPMindModule mindNotify() The same as cameraNotify()

JPActionModule actionNotify() When a set of joint angles are achieved

JPSensorModule sensorNotify() When sensor data is detected

JPUDPModule udpNotify() When UDP data is received

JPTCPModule tcpNotify() When TCP data is received

making a subclass of the class OObject, i.e. the class JPObject is the core of our
robot programs. The class JPObject registers the instances of the constructed
modules, and calls the modules every time certain events occur.

In order to create modules, we only need to make a subclass of abstract
classes (e.g. JPCameraModule for processing camera images, JPActionModule
for calculating joint angles during motion, JPSensorModule for managing infor-
mation from sensors, and JPMindModule for developing strategies). The abstract
classes have various special functions that are called when the class JPObject
receives certain events. Table 1 shows the specifications of the special functions.
For instance, the class JPCameraModule has the function cameraNotify() called
every 40 ms in sync with the frame rate of the CCD-camera. That means, to get
an image from the CCD-camera, we only need to make a subclass of the class
JPCameraModule. In the same way, we can easily create various other modules.
By selecting certain modules, we can make various robot programs not only for
soccer players, but also for other events, such as the open challenge.

2.2 Embedding Lua

We embedded a scripting language, Lua [2] so that mind modules creating strate-
gies can call Lua scripts and so that Lua scripts can call methods in other C++
modules. In a mind module, the Lua function mindNotify() is called in the
C++ member function mindNotify(). We can quite easily call a Lua function
by using Luabind [3], which is a library that lets us intuitively create bindings
between C++ and Lua.

In order for Lua scripts to call methods in other C++ modules, it is necessary
to bind the modules on the C++ side. This means we must register an instance
of the modules, as well as information of the classes and member functions. Using
Luabind, we can also easily bind C++ modules in functions. When embedding
scripting languages (e.g. Lua, Python, and Perl), we typically must define global
wrapper functions for functions that we want to bind. This means we rewrite
the bindings whenever we exchange modules. However, Luabind can cut out this
annoying task because it is implemented utilizing template meta programming.

Luabind can also register information regarding class inheritance. We need
not bind in the class AdvancedExampleModule inheriting the class ExampleModule.
Therefore, we need not rewrite our scripts even if we exchange these modules.

Camera

CDTBox

Raw Image

Vision DetectBall

DetectStatus

Specific Color
Image

Ovserved
Ball Information

Ovserved
Landmark Information

Fig. 2. The flowchart of Image Processing

The same is true for compatible modules in terms of bindings (e.g. ExampleModule2
having the same methods that ExampleModule has).

2.3 Specification of Our Robot Scripts

After embedding Lua, high-level processes can be described as scripts. In this
accomplished framework we can create robot scripts with simple rules that ev-
eryone easily understand. The function init(), where we can initialize variables,
is called only once at the beginning. The function mindNotify() is called by the
member function mindNotify() in the mind module. That is to say, it is called
every 40 ms.

3 Image Processing

In RoboCup, image processing is one of the most difficult problems. Last year,
our robots consumed most of the time for image processing. This year, we recon-
structed our image processing system at first, and introduced new approaches.
Our image processing system consists of three modules, CDTBox, Vision and
DetectBall. CDTBox module converts original 24-bit colors into 8 specific
colors. Vision module recognizes landmark objects, and DetectBall module
recognize the orange ball. Figure 2 shows the flowchart of image processing.

We developed a tool for color classification (show Figure 3). The usage of this
tool is as follows. First, choose a color in the group (Red Ellipse in Figure 3) and
click a point in images on the tool (Yellow Boxes). Then the color of the point
is learned. Eight specific color, red, blue, yellow, cyan, pink, green, white, and
orange, are learned. Those are the color of uniform of robots, goal, pole, field,
line and ball. Colors that does not relate with a game is learned as negative
samples.

Fig. 3. Color Table Making Tool

4 Ball Localization using Monte-Carlo Method

We proposed a technique which estimates the position and velocity of a moving
ball based on the Monte-Carlo localization [4]. The aim is to calculate the accu-
rate position and velocity of the ball from a series of input images. We tried three
variations of the method, in order to estimate both the position and velocity of
the moving ball. (1) Each sample holds both the position and velocity, but is
updated according to only the information of the position. (2) Each sample holds
both the position and velocity, and is updated according to the information of
both the position and velocity. (3) Two kinds of samples are considered: one
for the position, and the other for the velocity, which are updated separately.
Among them, the third method performed the best in our experiments. We will
briefly summarize the third method below.

The idea is to split the samples into two categories, one for the positions
〈pi, si〉, and the other for the velocities 〈vi, si〉. The score of p is updated in
step 8 ∼ 11 of PositionUpdate while that of v in step 2 ∼ 5 of VelocityUpdate
independently, in Figure 6.

The line MonteCarlo (two sets) in Figure 5 shows the results. The estimated
positions fits the pathway of the rolling ball, and the predicted trajectory when
ball was out of sight is also as we expected. The effectiveness of it is comparable
to the Kalman filter method in Figure 4.

 0

 500

 1000

 1500

 2000

 2500

-1000 -500 0 500 1000 1500 2000 2500 3000

Simulated Ball Position
Kalman Filter

MonteCarlo (pos only)

Fig. 4. The result of the simulation with
Kalman filter and MonteCarlo (pos only)

 0

 500

 1000

 1500

 2000

 2500

-1000 -500 0 500 1000 1500 2000 2500 3000

Simulated Ball Position
MonteCarlo(pos and vel)

MonteCarlo(two sets)

Fig. 5. The result of the simulation with
MonteCarlo (pos and vel) and MonteCarlo
(two sets)

4.1 Real-world Experiments

We also performed many experiments in the real-world environments, at which
we used the real robot in the soccer field of RoboCup competitions. We show
some of them in Fig. 7, where we compared the third method which we proposed
with the Kalman filter method. The purpose was to evaluate the robustness of the
methods against the obstacle and the change directions of the ball movement.
In the left figure, the ball rolled from right to left while a small obstacle in
front of the robot hides for some moments. In the right figure, the ball was
kicked at (400, 900) and went left, then it is rebounded twice at (−220, 1400) and
(−50, 500), and disappeared from the view to the right. Mesh parts in the figures
illustrates the visible area of the robot. From these experiments, we verified that
the proposed method is robust against the frequent change of the directions,
which is often the case in real plays.

5 Ball Trapping

Passing (including receiving a passed ball) is one of the most important skills
in soccer and is actively studied in the simulation league. For several years,
many studies [5, 6] have used the benchmark of good passing abilities, known
as “keepaway soccer”, in order to learn how a robot can best learn passing.
However, it is difficult for robots to even control the ball in the real robot leagues.
In addition, robots in the four-legged robot league have neither a wide view,
high-performance camera, nor laser range finders. As is well known, they are not
made for playing soccer. Quadrupedal locomotion alone can be a difficult enough
challenge. Therefore, they must improve upon basic skills in order to solve these
difficulties, all before pass-work learning can begin. We believe that basic skills
should be learned by a real robot, because of the necessity of interaction with
a real environment. Also, basic skills should be autonomously learned because

Algorithm BallMoteCarloLocalizationWithTwoSets
Input. Two sets of samples POS = {〈pi, si〉} and VEL = {〈vi, si〉}, observed ball
position po, calculated ball velocity vo.
Output. estimated ball position pe and velocity ve.

PositionUpdate(POS ,VEL,po,vo)

1 ve := VelocityUpdate(VEL,po,vo);
2 for i := 1 to n do begin
3 pi := pi + ve;
4 if pi is out of the field then
5 randomize(〈pi, si〉)
6 end;
7 if po 6= ε then
8 for i := 1 to n do begin
9 score := exp(−τp|pi − po|);
10 si := max(si − maxdownp,

min(si + maxupp, score))
11 end;
12 pe = 0; w = 0;
13 avgScore := 1

n

∑n

i=1
si;

14 for i := 1 to n do begin
15 if si < avgScore · random() then
16 randomize(〈pi, si〉)
17 else if si > tp then begin
18 pe := pe + si pi;
19 w := w + si

20 end;
21 end;
22 pe := pe/w;
23 output pe, ve

VelocityUpdate(VEL,po,vo)

1 if po 6= ε then
2 for i := 1 to m do begin
3 scorenew := exp(−τv|vi − vo|);
4 si := max(si − maxdownv,

min(si + maxupv, score))
5 end;
6 ve = 0; w = 0;
7 avgScore := 1

m

∑m

i=1
si;

8 for i := 1 to m do begin
9 if si < avgScore · random() then
10 randomize(〈vi, si〉)
11 else if si > tv then begin
12 ve := ve + si vi;
13 w := w + si

14 end;
15 end;
16 ve := ve/w;
17 output ve

Fig. 6. Procedure Ball Monte-Carlo Localization with two sets of samples

changes to an environment will always consume much of people’s time and energy
if the robot cannot adjust on its own.

There have been many studies conducted on the autonomous learning of
quadrupedal locomotion, which is the most basic skill for every movement. How-
ever, the skills used to control the ball are often coded by hand and have not been
studied as much as gait learning. We studied an autonomous learning method
for ball trapping skills [7], where we restricted the model in one-dimension. We
prepared some training equipment and then experiment with only one robot.
The robot could use our method to acquire these necessary skills on its own,
much in the same way that a human practicing against a wall can learn the
proper movements and actions of soccer on his/her own. We also experimented
with two robots, and our findings suggest that robots communicating between
each other can learn more rapidly than those without any communication.

 0

 500

 1000

 1500

 2000

-600 -400 -200 0 200 400 600 800

Observed Ball Position
Kalman Filter

Ball Monte-Carlo Method
 0

 500

 1000

 1500

 2000

-600 -400 -200 0 200 400 600 800

Observed Ball Position
Kalman Filter

Ball Monte-Carlo Method

Fig. 7. Real world experiments. In the left situation, the ball rolled from right to
left behind a small obstacle. In the right situation, the ball started at (400, 900) and
rebounded twice at (−220, 1400) and (−50, 500), and disappeared from the view to the
right.

6 Concluding Remarks

This paper described the footstep of Jolly Pochie in this year. We developed a
new localization technique for the ball location and suggested an autonomous
learning method for ball trapping skills. We hope to use this trapping skills for
actual games as well as the Passing Challenge.

References

1. Hayato Kobayashi, Akira Ishino, and Ayumi Shinohara. A framework for advanced
robot programming in the RoboCup domain. In Proc. Intelligent Autonomous Sys-
tems 9 (IAS-9), pages 660–667. IOS-Press, 2006.

2. The Programming Language Lua. http://www.lua.org/.
3. Luabind. http://luabind.sourceforge.net/.
4. Jun Inoue, Akira Ishino, and Ayumi Shinohara. Ball tracking with velocity based

on monte-carlo localization. In Proc. Intelligent Autonomous Systems 9 (IAS-9),
pages 686–693. IOS-Press, 2006.

5. Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning
for robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

6. William H. Hsu, Scott J. Harmon, Edwin Rodriguez, and Christopher Zhong. Empir-
ical comparison of incremental reuse strtegies in genetic programming for keep-away
soccer. In Late Breaking Papers at the 2004 Genetic and Evolutionary Computation
Conference, 2004.

7. Hayato Kobayashi, Tsugutoyo Osaki, Eric Williams, Akira Ishino, and Ayumi Shi-
nohara. Autonomous learning of ball trapping in the four-legged robot league. In
Proc. RoboCup International Symposium 2006, LNCS. Springer-Verlag, 2007. to
appear.

