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• For robots to function in the real world, 

they need abilities to acquire basic skills

– e.g., walking, running, jumping, catching, throwing, 
shooting, hitting, kicking, swimming, flying, …

Background

Acquisition of passing (shooting) skills on real robots
Passing is to exactly move a ball to the target position

Procedure of each trial

1. Pick up a candidate
(think up a new motion)

2. Try the candidate
(perform the motion) 

3. Evaluate the score
(estimate the distance)

4. Restore the state
(return the ball)
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Background

Acquisition of passing (shooting) skills on real robots
Passing is to exactly move a ball to the target position

Procedure of each trial

1. Pick up a candidate
(think up a new motion)

2. Try the candidate
(perform the motion) 

3. Evaluate the score
(estimate the distance)

4. Restore the state
(return the ball)

Motion (Sequence of joint angles)
[-5.0, 5.0, -10.0, 5.0, 45.0, 60.0, 0.0, 10.0, 
75.0, -50.0, 15.0, 105.0, -60.0, 15.0, 90.0, -7, 
-15.0, 5.0, 25.0, 40.0, 60.0, -10.0, 0.0,……….]

Motion (Sequence of joint angles)
[-5.0, 5.0, -5.0, 0.0, 45.0, 65.0, 5.0, 10.0, 80.0, 
-50.0, 15.0, 100.0, -55.0, 10.0, 95.0, -2, -10.0, 
10.0, 30.0, 45.0, 60.0, -15.0, -5.0, 95.0, ………]

Motion (Sequence of joint angles)
[-5.0, 5.0, -5.0, 0.0, 40.0, 65.0, 5.0, 5.0, 75.0, 
-55.0, 10.0, 100.0, -55.0, 5.0, 100.0, 3, -5.0, 
5.0, 35.0, 40.0, 60.0, -15.0, -10.0, 95.0, …….]

Motion (Sequence of joint angles)
[-5.0, 5.0, -10.0, 5.0, 45.0, 60.0, 0.0, 10.0, 
75.0, -50.0, 15.0, 105.0, -60.0, 15.0, 90.0, -7, 
-15.0, 5.0, 25.0, 40.0, 60.0, -10.0, 0.0,……….]

Score is 200Score is 500Score is 0Score is 800
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Main Difficulty in Skill Discovery

• Each trial consumes much time and costs

– Each trial needs more than 30 seconds (average)

– Robots can be broken easily for many trials

Example: if we use 1,000 generations by GA on real robots
Trials = 1,000 (generations)

× 10 (if we use 10 population size)
× 5 (if we use the average of 5 trials for noise reduction)

= 50,000 (trials)
Time = 50,000 (trials)×30 (seconds)

= 1,500,000 (seconds)
= 416 (hours)
= 17 (days)

(Robot’s battery is dead in only 30 minutes)

＞ 11 (days), Sleepless World Record
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Thinning-out

• To skip over unnecessary trials
– The same concept as “pruning” in search trees

• By Inferring the upperbound of each score
– We utilize the smoothness of score functions

• Related work
– Acceleration of search methods
– Memory based learning

• Memory-based fitness evaluation GA [Sano et al., 2000]
• Locally weighted regression [Schaal and Atkeson, 1994]

– Typical methods by inferring scores directly
• Approximation of scores using kriging interpolation [Ratle, 1998]
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Example: Maximization of unknown score function in one dimension

Unnecessary trials = duplicated candidates and unpromising candidates
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Basic idea of thinning-out

score
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Example: Maximization of unknown score function in one dimension

Unnecessary trials = duplicated candidates and unpromising candidates

Needs for smoothness (or roughness)
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Lipschitz condition
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Lipschitz condition
X: search space
f: score function
d: metric of X
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Possible range of f(x2)
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Extension of Lipschitz condition

),()()( , 212121 xxdcxfxfXxxc  R

Lipschitz condition

)),(()()( , : 212121 xxdgxfxfXxxg  RR

Lipschitz condition

f is said to be c-Lipschitz continuous
c is said to be a Lipschitz constant

f is said to be g-Lipschitz continuous
g is said to be a Lipschitz function

extend
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Score range
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Score range
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Inferring methods of Lipschitz function

• Max Gradient (MG)

– Naïve method

– Thin-out correctly

• Gathering Differences (GD)

– Heuristics method

– Thin-out a lot

28



Max Gradient (MG)

• Utilize the maximum gradient

– g(d) = cm∙d

x

f(x)
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Max Gradient (MG)

• Utilize the maximum gradient
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Max Gradient (MG)

• Utilize the maximum gradient

– g(d) = cm∙d

d

Inferred g(d)
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• Utilize gradients with smaller distance in first

– Better approximation of the landscape

Gathering Differences (GD)

x

f(x)

(This is just intuitive illustration)
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Test functions

(Sano et al. (2000) also utilized these test functions for evaluating distributed GA)

The shape of test functions in 2 dimensions

Multiple peaks

Dependency of variables

Single peak with a global view
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Sampling method

• Need a sampling method
– Our method only skips over candidates

• Meta-heuristics
– Genetic Algorithm (GA)

– Simulated Annealing

– Hill Climbing

– Policy Gradient

– (Random Sampling)

(We can combine any meta-heuristics and our method)
40



Performance evaluation
by the kind of test functions

Function
GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

Rastrigin 19.53 0.23 21.40 1.99

Schwefel 17.02 0.18 21.03 1.42

Griewank 17.18 0.24 21.02 1.01

Rosenbrock 17.77 0.05 21.29 0.69

Ridge 18.11 0.00 19.60 0.75

Ackley 20.09 2.77 29.52 2.94

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate and error rate of GA+MG and GA+GD

Trial rate = #trials / #candidates × 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates)× 100

≒
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Function
GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

Rastrigin 19.53 0.23 21.40 1.99

Schwefel 17.02 0.18 21.03 1.42

Griewank 17.18 0.24 21.02 1.01

Rosenbrock 17.77 0.05 21.29 0.69

Ridge 18.11 0.00 19.60 0.75

Ackley 20.09 2.77 29.52 2.94

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate and error rate of GA+MG and GA+GD

Trial rate = #trials / #candidates × 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates)× 100

＜

Our method can reduce many trials with a few errors
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A few errors will not affect final results
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Minimization  results

Function Min score by GA only Min score by GA+MG Min score by GA+GD

Rastrigin 24 13 19

Schwefel 712 435 439

Griewank 43 32 33

Rosenbrock 418 330 296

Ridge 11,542,427 8,233,764 8,878,178

Ackley 19 18 18

Minimization results of GA only, GA+MG, and GA+GD

(The average over 100 experiments using 50 trials in 2 dimensions)

＞
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Performance evaluation
by the dimension size of a function

Dimension size GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

2 17.03 0.41 22.56 2.44

5 40.17 0.16 22.74 4.08

10 54.48 0.12 25.92 5.09

50 64.77 0.19 29.16 6.89

100 64.30 0.13 31.11 6.12

Trial rate and error rate of GA+MG and GA+GD

(the average over 100 experiments using 100 candidates in Rastrigin function)

Trial rate = #trials / #candidates × 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates)× 100
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Performance evaluation
by the dimension size of a function

Dimension size GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

2 17.03 0.41 22.56 2.44

5 40.17 0.16 22.74 4.08

10 54.48 0.12 25.92 5.09

50 64.77 0.19 29.16 6.89

100 64.30 0.13 31.11 6.12

Trial rate and error rate of GA+MG and GA+GD

(the average over 100 experiments using 100 candidates in Rastrigin function)

Trial rate = #trials / #candidates × 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates)× 100

In high dimensions
MG has the advantage of error rate
GD has the advantage of trial rate
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Our method can reduce many more trials,
as the number of candidates increases
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Discovery of strong shot motions

• Experiments in a simulation environment

– Developed by Zaratti et al.(2006)

It takes dozens of hours for 1 experiment

Initial motion
(The search space is 75 dimensions)

https://youtu.be/GqBj-jrEPI4
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Discovered shot motions

Discovered motion using its whole body

Discovered motion using its own weight

Initial motion

Score 600

Score 2000

Score 1200

https://youtu.be/p4OoxYc3pEs

https://youtu.be/Mm30gT9oy1g
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Comparison in skill discovery

Max score by GA only Max score by GA+MG Max score by GA+GD

936 940 1058

(The average of 10 experiments using 50 actual trials)

Results of maximization by GA only, GA+MG, and GA+GD

GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

62.40 0.56 51.00 7.69

(The average of 10 experiments using 50 candidates)

Trial rate and error rate of GA+MG and GA+GD

Trial rate = #trials / #candidates × 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates)× 100

50 actual trials)
＜

Almost the same result of GA only 
using about 100 actual trials

50% trials were reduced
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Conclusions 

• Thinning-out for reducing unnecessary trials

– Max Gradient (MG)

– Gathering Differences (GD)

• Performance evaluation by test functions

– MG and GD worked well in various test functions.

• Discovery of strong shot motions

– Unexpected dynamic motions
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Future work

• Exploration of more useful inferring methods

– As many as possible

– As correctly as possible

• Experiments in the real environment

– Verifying that our method can treat real noise

• Theoretical analysis as a randomized algorithm

– O(logn) trials for n candidates in random sampling
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Thank you for your attention!

Discovered poor shot motions :(

https://youtu.be/L7dDnJLLjv4 https://youtu.be/2-GfOOIy8Xc
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