Reducing Trials by Thinning-out in Skill Discovery

<u>Hayato Kobayashi¹</u>, Kohei Hatano², Akira Ishino¹, and Ayumi Shinohara¹ ¹Tohoku University, Sendai, Japan ²Kyushu University, Japan

DS 2007 @ Sendai, Japan

Contents

- Background
- Thinning-out for reducing trials
 - Max Gradient (MG) method
 - Gathering Differences (GD) method
- Performance evaluation by test functions
- Discovery of strong shots on virtual robots
- Conclusions and future work

Background

- For robots to function in the real world, they need abilities to acquire basic skills
 - e.g., walking, running, jumping, catching, throwing, shooting, hitting, kicking, swimming, flying, ...

Procedure of each trial

- Pick up a candidate (think up a new motion)
- Try the candidate (perform the motion)
- 3. Evaluate the score (estimate the distance)
- 4. Restore the state (return the ball)

Acquisition of passing (shooting) skills on real robots Passing is to exactly move a ball to the target position

Background

For robots to function in the real world,

they ne Motion (Sequence of joint angles) [-5.0, 5.0, -10.0, 5.0, 45.0, 60.0, 0.0, 10.0,-e.g., V 75.0, -50.0, 15.0, 105.0, -60.0, 15.0, 90.0, -7, **shoot** -15.0, 5.0, 25.0, 40.0, 60.0, -10.0, 0.0,.....] ilving, ...

Procedure of each trial

- 1. Pick up a candidate (think up a new motion)
- 2. Try the candidate (perform the motion)
- 3. Evaluate the score (estimate the distance)
- 4. Restore the state (return the ball)

Score is 800

Acquisition of passing (shooting) skills on real robots Passing is to exactly move a ball to the target position

Main Difficulty in Skill Discovery

- Each trial consumes much time and costs
 - Each trial needs more than 30 seconds (average)
 - Robots can be broken easily for many trials

Example: if we use 1,000 generations by GA on real robots

Trials = 1,000 (generations)

× 10 (if we use 10 population size)

× 5 (if we use the average of 5 trials for noise reduction)

= 50,000 (trials)

- Time = 50,000 (trials) × 30 (seconds)
 - = 1,500,000 (seconds)
 - = 416 (hours)

= 17 (days) > 11 (days), Sleepless World Record

(Robot's battery is dead in only 30 minutes)

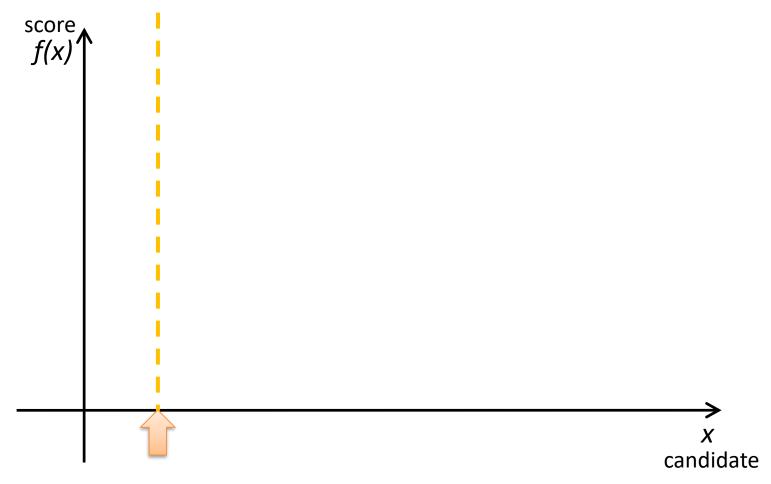
Contents

- Background
- Thinning-out for reducing trials
 - Max Gradient (MG) method
 - Gathering Differences (GD) method
- Performance evaluation by test functions
- Discovery of strong shots on virtual robots
- Conclusions and future work

Thinning-out

- To skip over unnecessary trials
 The same concept as "pruning" in search trees
- By Inferring the upperbound of each score
 - We utilize the smoothness of score functions
- Related work
 - Acceleration of search methods
 - Memory based learning
 - Memory-based fitness evaluation GA [Sano et al., 2000]
 - Locally weighted regression [Schaal and Atkeson, 1994]
 - Typical methods by inferring scores directly
 - Approximation of scores using kriging interpolation [Ratle, 1998]

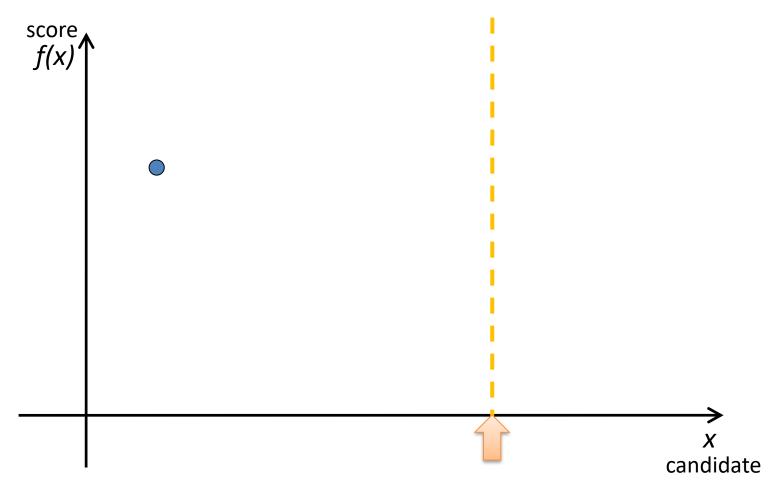
Unnecessary trials = duplicated candidates and unpromising candidates



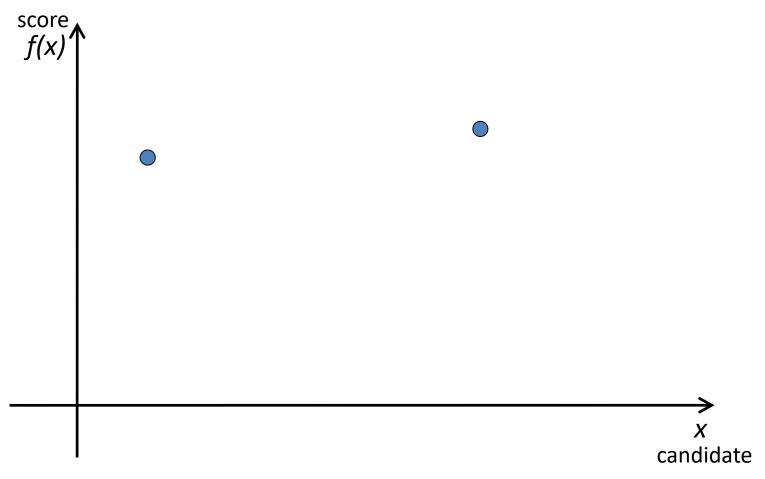
Unnecessary trials = duplicated candidates and unpromising candidates



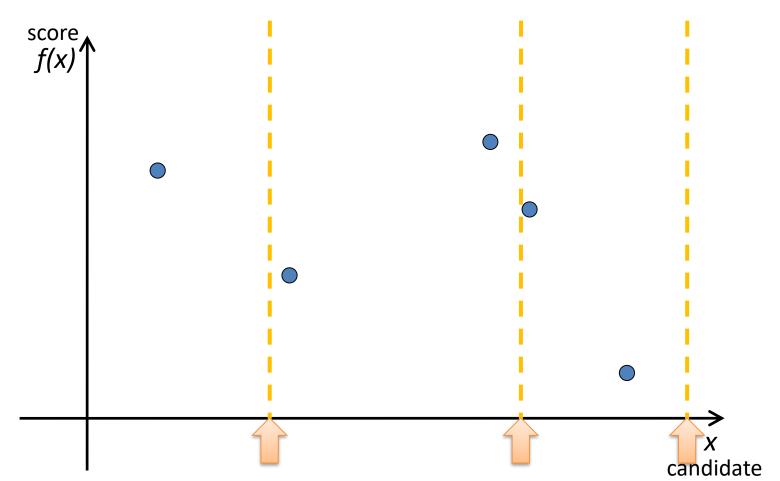
Unnecessary trials = duplicated candidates and unpromising candidates



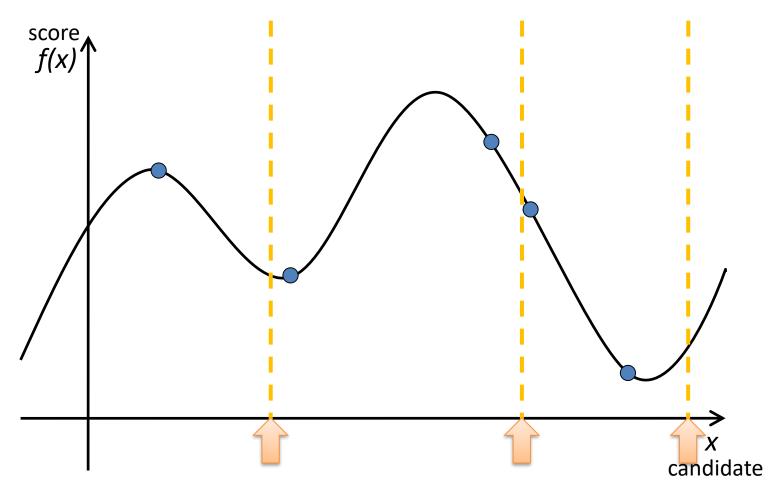
Unnecessary trials = duplicated candidates and unpromising candidates

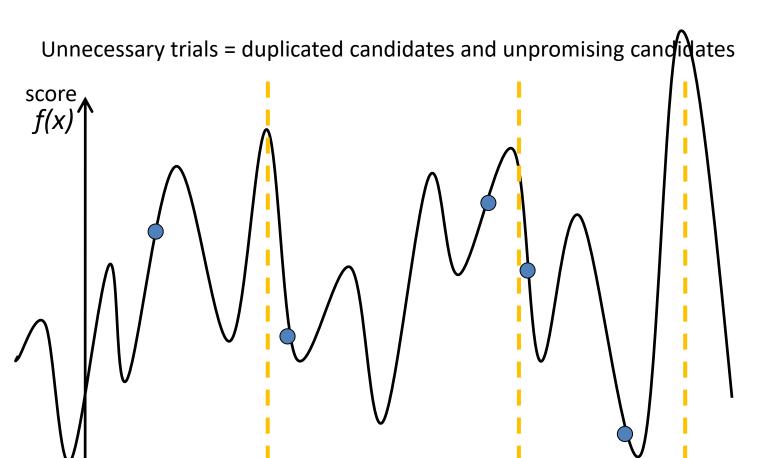


Unnecessary trials = duplicated candidates and unpromising candidates



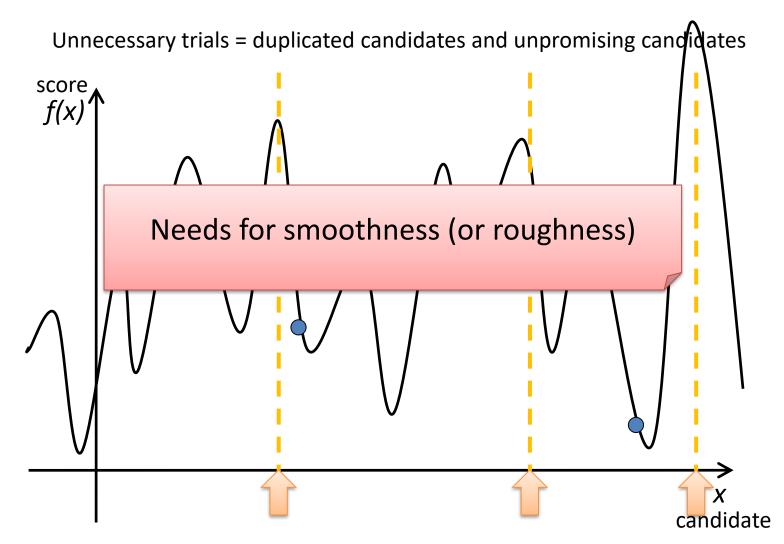
Unnecessary trials = duplicated candidates and unpromising candidates





Example: Maximization of unknown score function in one dimension

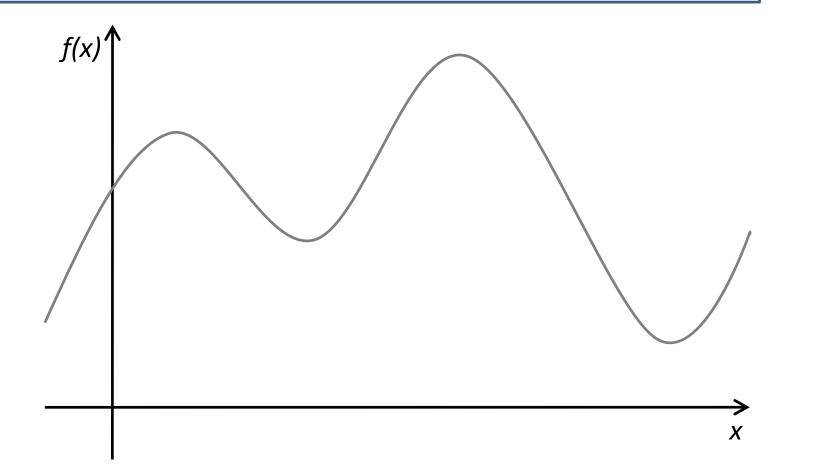
x candidate



Lipschitz condition

Lipschitz condition $\exists c \in \mathbf{R} \ \forall x_1, x_2 \in X \left| f(x_1) - f(x_2) \right| \le c \cdot d(x_1, x_2)$

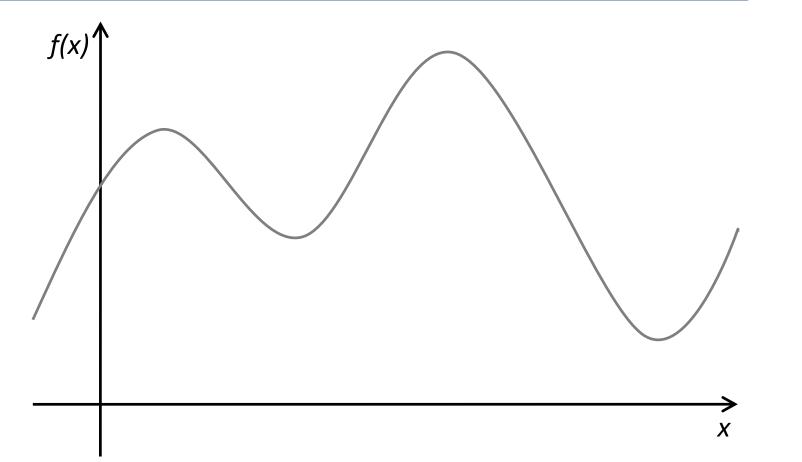
X: search spacef: score functiond: metric of X



$$f(x_1) - c \cdot d(x_1, x_2) \le f(x_2) \le f(x_1) + c \cdot d(x_1, x_2)$$

$$\exists c \in \mathbf{R} \ \forall x_1, x_2 \in X \ \left| f(x_1) - f(x_2) \right| \le c \cdot d(x_1, x_2)$$

$$X: \text{ search space} f: \text{ score function} d: \text{ metric of } X$$



$$f(x_1) - c \cdot d(x_1, x_2) \le f(x_2) \le f(x_1) + c \cdot d(x_1, x_2)$$
Lipschitz condition
$$\exists c \in \mathbf{R} \forall x_1, x_2 \in X | f(x_1) - f(x_2) | \le c \cdot d(x_1, x_2)$$

$$f(x)$$

$$f(x)$$
Possible range of score
Possible range of score
$$x = x_1 + x_2 + x_2 + x_2 + x_3 +$$

$$f(x_{1}) - c \cdot d(x_{1}, x_{2}) \leq f(x_{2}) \leq f(x_{1}) + c \cdot d(x_{1}, x_{2})$$
Lipschitz condition
$$\exists c \in \mathbf{R} \forall x_{1}, x_{2} \in X | f(x_{1}) - f(x_{2})| \leq c \cdot d(x_{1}, x_{2})$$

$$f(x) \qquad f(x) \qquad f(x_{1}) + c \cdot d(x_{2}, x_{2})$$
Possible range of $f(x_{2})$

$$f(x_{1}) - c \cdot d(x_{2}, x_{2})$$
Possible range of score
Possible r

Extension of Lipschitz condition

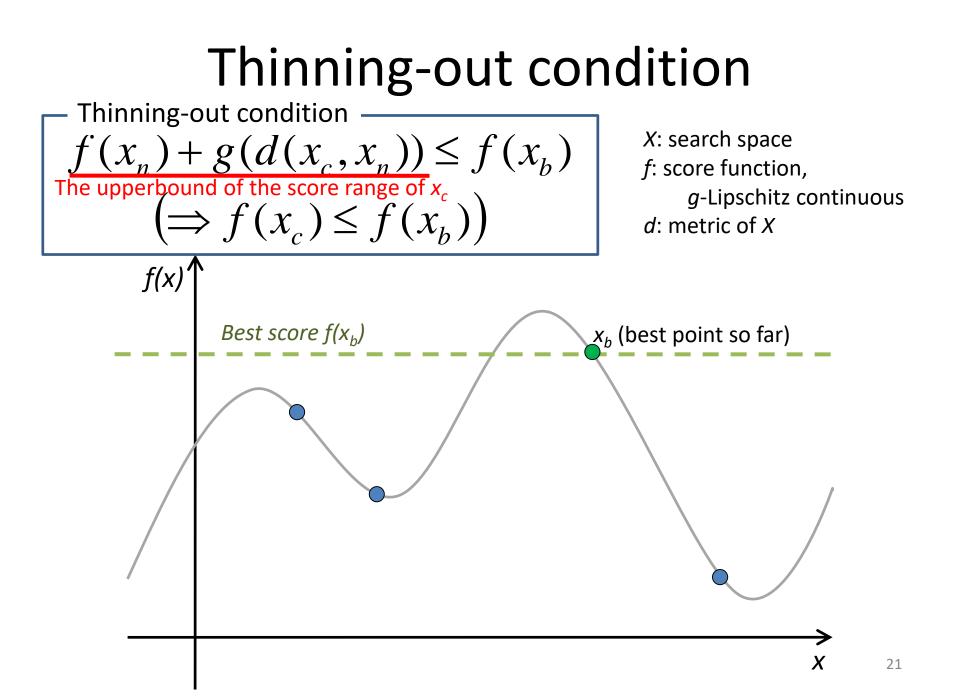
- Lipschitz condition

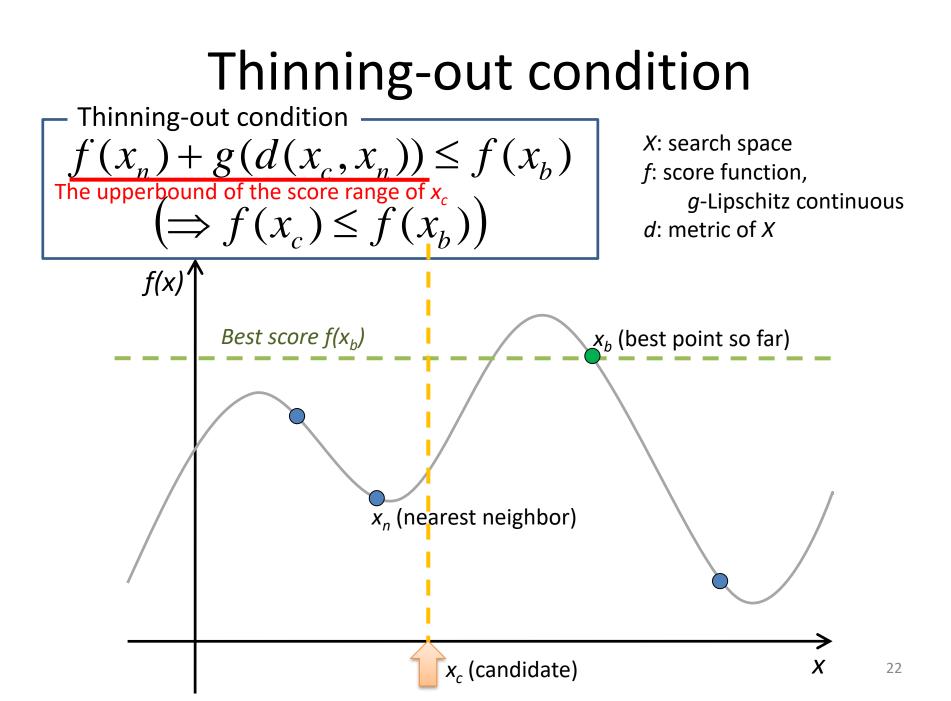
$$\exists c \in \mathbf{R} \,\forall x_1, x_2 \in X \left| f(x_1) - f(x_2) \right| \le c \cdot d(x_1, x_2)$$

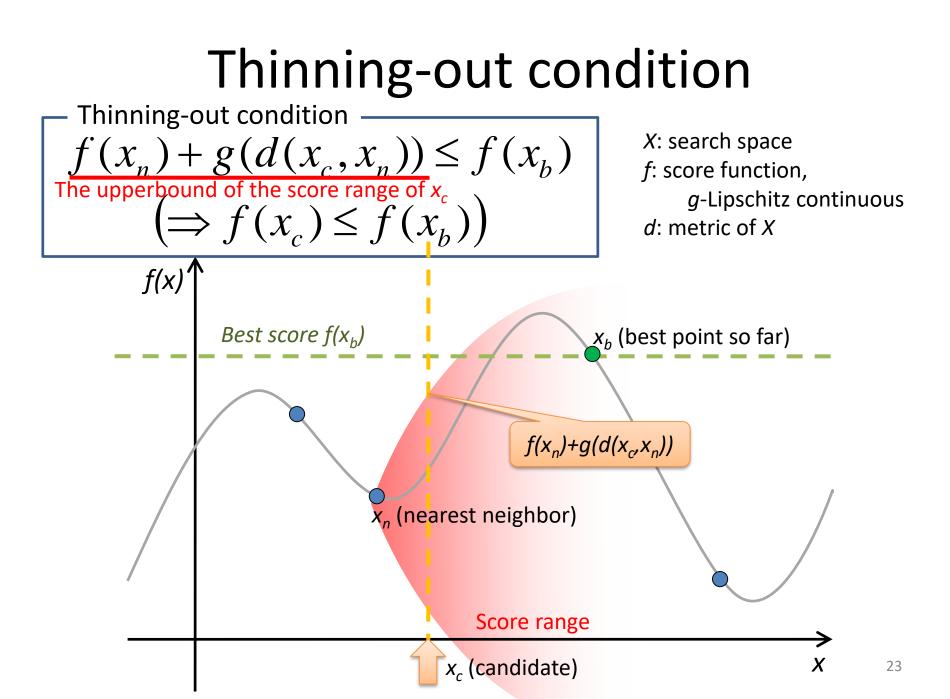
f is said to be c-Lipschitz continuous *c* is said to be a Lipschitz constant

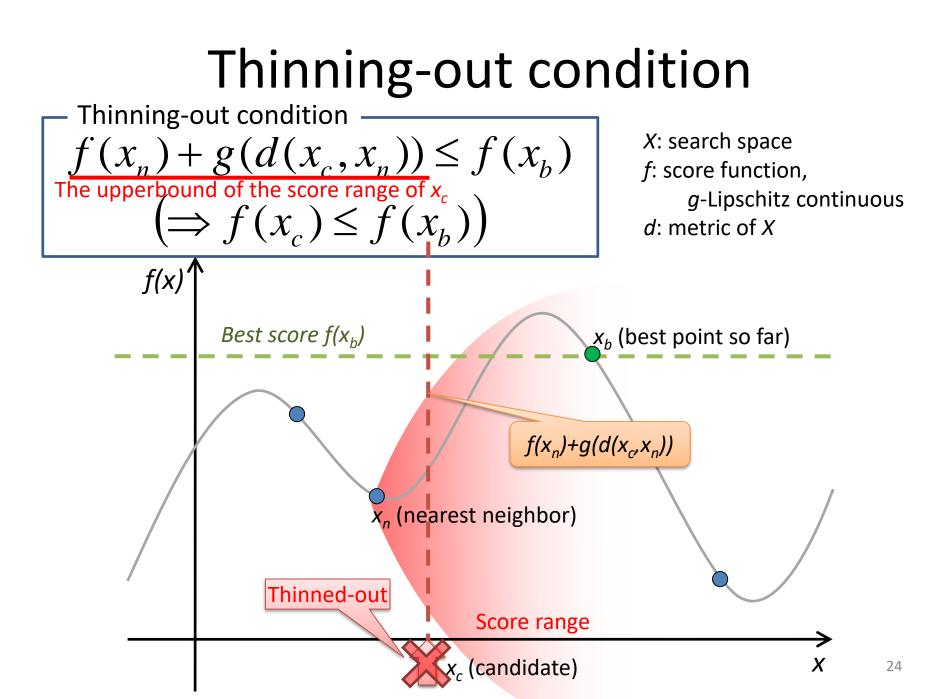
Lipschitz condition $\exists g: \mathbf{R} \to \mathbf{R} \ \forall x_1, x_2 \in X \left| f(x_1) - f(x_2) \right| \le g(d(x_1, x_2))$

f is said to be g-Lipschitz continuous g is said to be a Lipschitz function

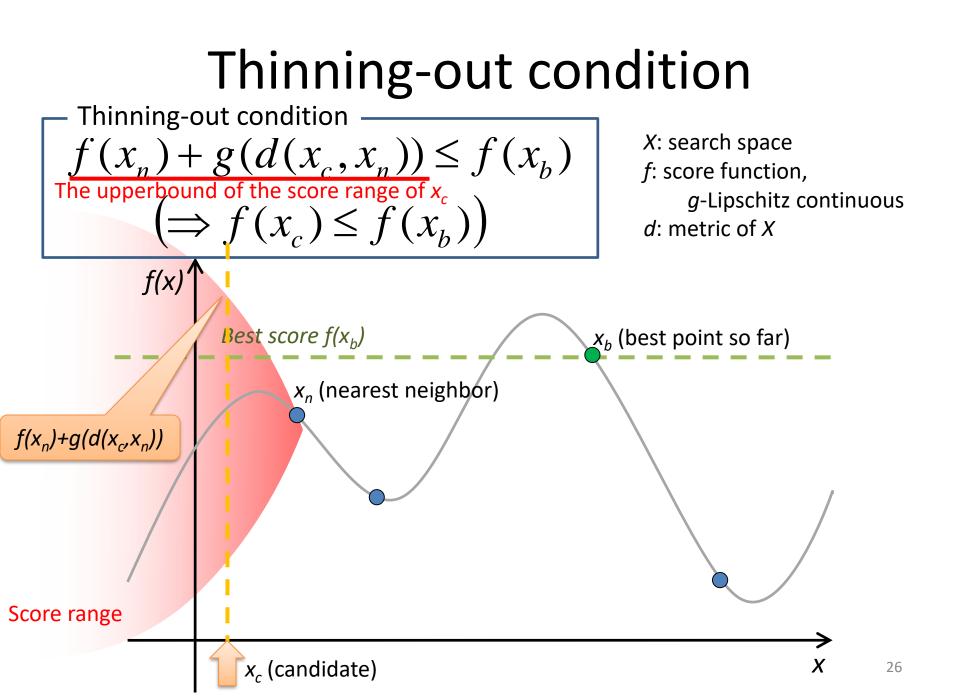


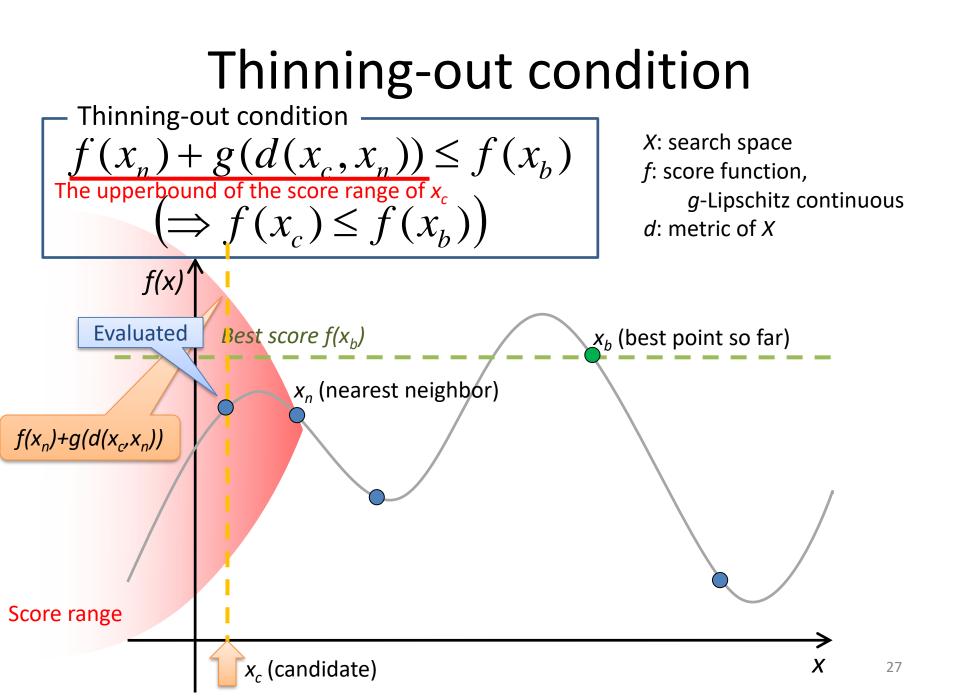








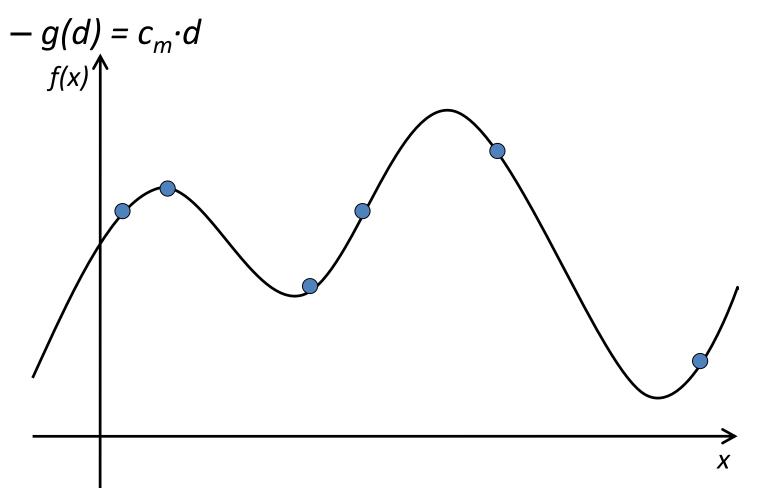




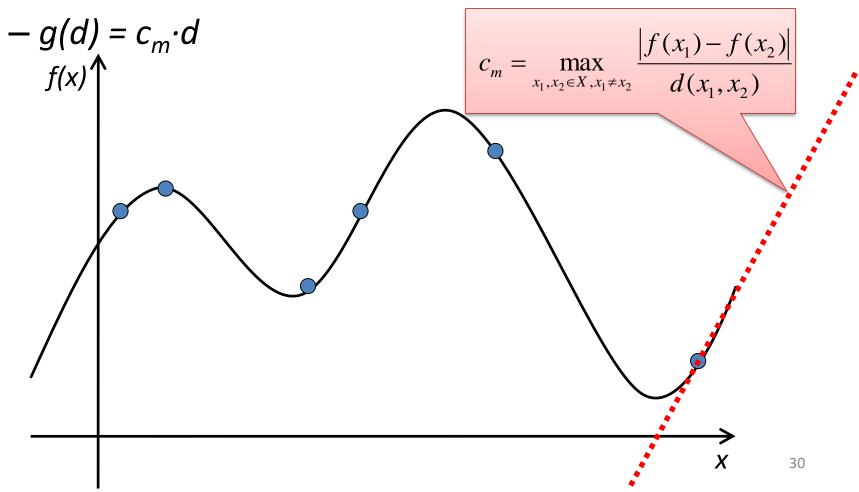
Inferring methods of Lipschitz function

- Max Gradient (MG)
 - Naïve method
 - Thin-out correctly
- Gathering Differences (GD)
 - Heuristics method
 - Thin-out a lot

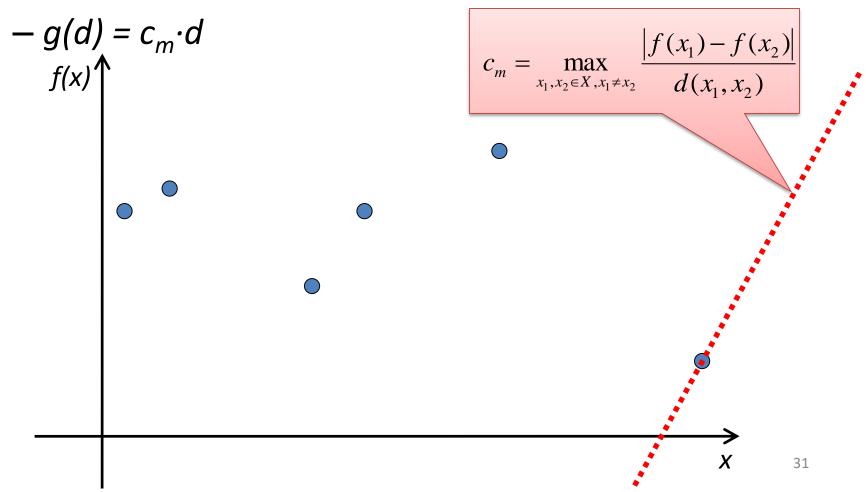
• Utilize the maximum gradient



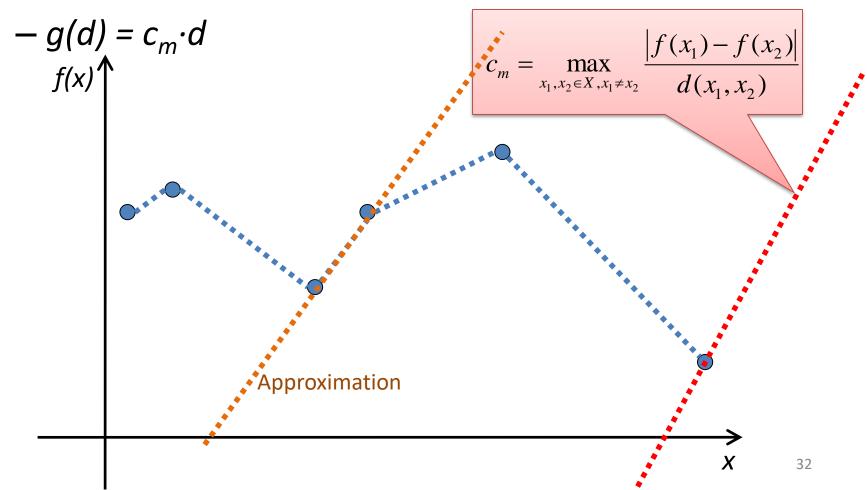
Utilize the maximum gradient



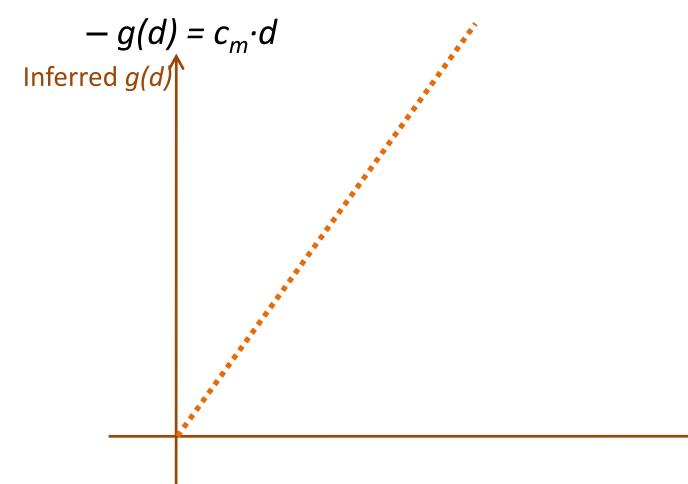
Utilize the maximum gradient



• Utilize the maximum gradient

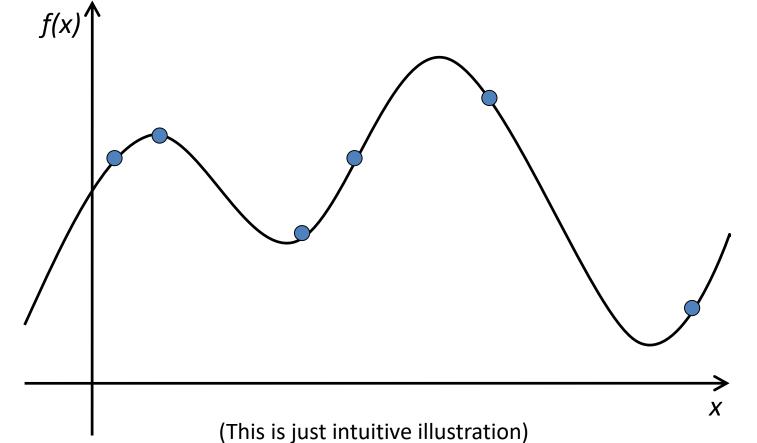


• Utilize the maximum gradient



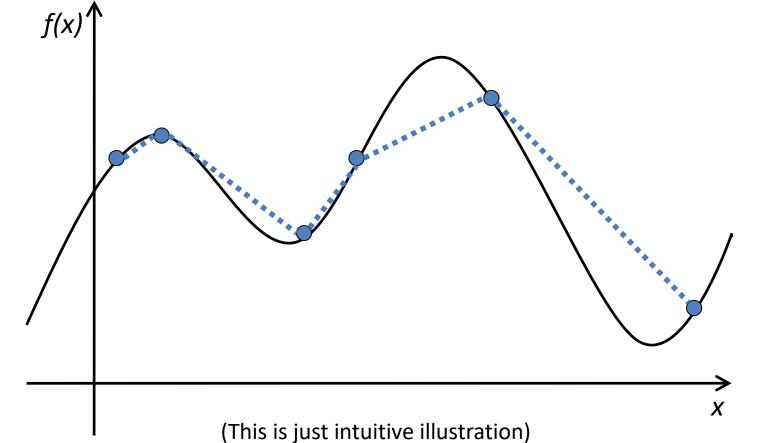
Gathering Differences (GD)

- Utilize gradients with smaller distance in first
 - Better approximation of the landscape



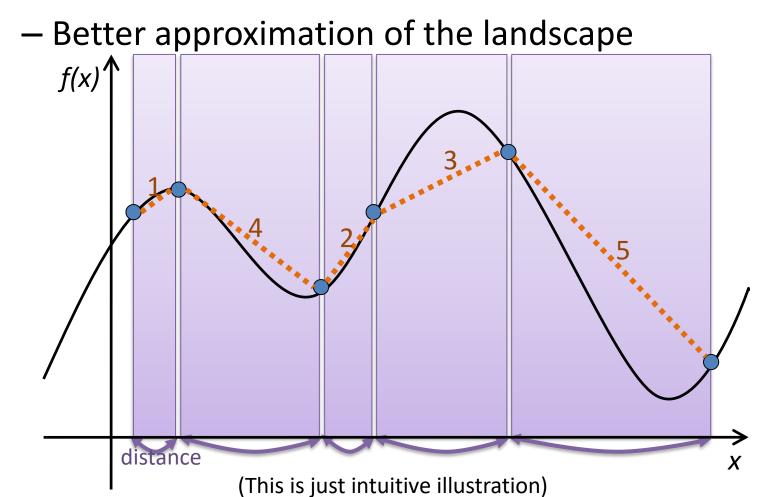
Gathering Differences (GD)

- Utilize gradients with smaller distance in first
 - Better approximation of the landscape



Gathering Differences (GD)

• Utilize gradients with smaller distance in first



Gathering Differences (GD)

• Utilize gradients with smaller distance in first

- Better approximation of the landscape

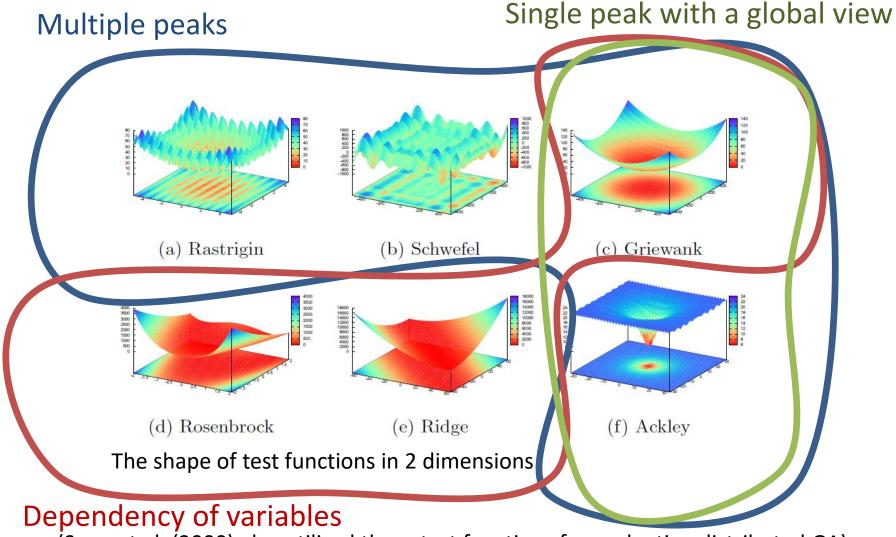
Inferred g(d)

(This is just intuitive illustration)

Contents

- Background
- Thinning-out for reducing trials
 - Max Gradient (MG) method
 - Gathering Differences (GD) method
- Performance evaluation by test functions
- Discovery of strong shots on virtual robots
- Conclusions and future work

Test functions



(Sano et al. (2000) also utilized these test functions for evaluating distributed GA)

Sampling method

- Need a sampling method

 Our method only skips over candidates
- Meta-heuristics
 - Genetic Algorithm (GA)
 - Simulated Annealing
 - Hill Climbing
 - Policy Gradient
 - (Random Sampling)

(We can combine any meta-heuristics and our method)

Performance evaluation by the kind of test functions

Trial rate and error rate of GA+MG and GA+GD

Function		GA+I	MG	GA+GD			
	Trial rate (%)		Error rate (%) Trial i		te (%)	Error rate (%)	
Rastrigin		19.53	0.23		21.40	1.99	
Schwefel		17.02	0.18		21.03	1.42	
Griewank		17.18	<mark>(24</mark>		21.02	1.01	
Rosenbrock		17.77	0.03		21.29	0.69	
Ridge		18.11	0.00		19.60	0.75	
Ackley		20.09	2.77		29.52	2.94	

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate = #trials / #candidates \times 100 Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) \times 100⁴¹

Performance evaluation by the kind of test functions

Our method can reduce many trials with a few errors

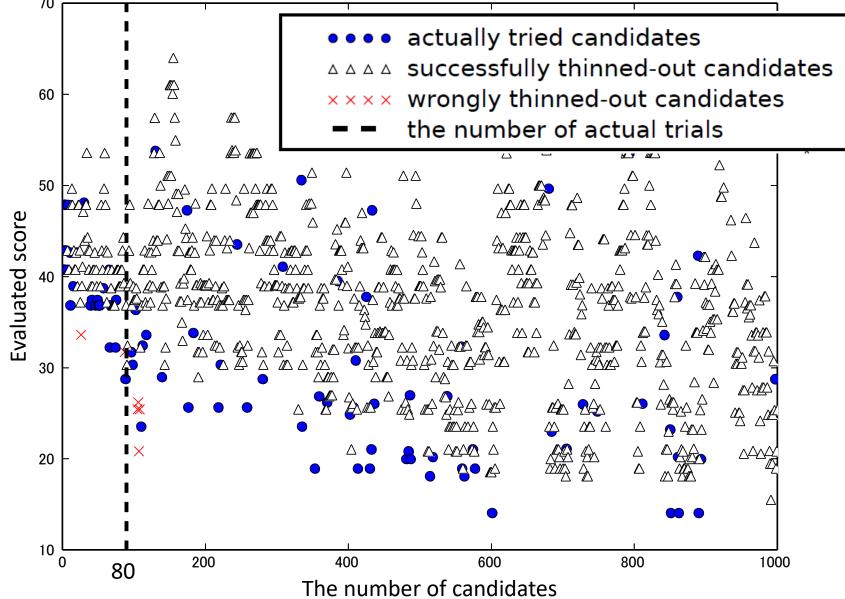
Trial

				GA+GD			
Function	Trial rate (%)	Error rate (%)		Trial rate (%)	Error rate (%)		
Rastrigin	19.53		0.23	21.40		1.99	
Schwefel	17.02		0.18	21.03		1.42	
Griewank	17.18		0.24	21 52		1.01	
Rosenbrock	17.77		0.05	21.29		0.69	
Ridge	18.11		0.00	19.60		0.75	
Ackley	20.09		2.77	29.52		2.94	

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate = #trials / #candidates \times 100 Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) \times 100⁴²

Minimization process with thinning-out



(1,000 candidates by GA+GD in 2 dimensional Rastrigin function)



(1,000 candidates by GA+GD in 2 dimensional Rastrigin function)

Minimization results

Minimization results of GA only, GA+MG, and GA+GD

Function	Min score	bv GA only	Min score	bv GA+MG	Min score by GA+GD
Rastrigin		24		13	19
Schwefel		712		435	439
Griewank		43		32	33
Rosenbrock		418		330	296
Ridge		11,542,427		8,233,764	8,878,178
Ackley		19		18	18

(The average over 100 experiments using 50 trials in 2 dimensions)

Performance evaluation by the dimension size of a function

Trial rate and error rate of GA+MG and GA+GD

Dimension size		GA+I	ИG	GA+GD			
	Trial ra <mark>te (%)</mark>		Error rate (%)	Trial rat	te (%)	Error rate (%)	
2		17.03	0.41		22.56	2.44	
5		40.17	0.16		22.74	4.08	
10		54.48	0.12		25.92	5.09	
50		64.77	0.19		29.16	6.89	
100		64.30	0.13		31.11	6.12	

(the average over 100 experiments using 100 candidates in Rastrigin function)

Trial rate = #trials / #candidates × 100 Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) × 100

(a) Rastrigin

46

Performance evaluation by the dimension size of a function

In high dimensions MG has the **advantage of error rate** GD has the **advantage of trial rate**

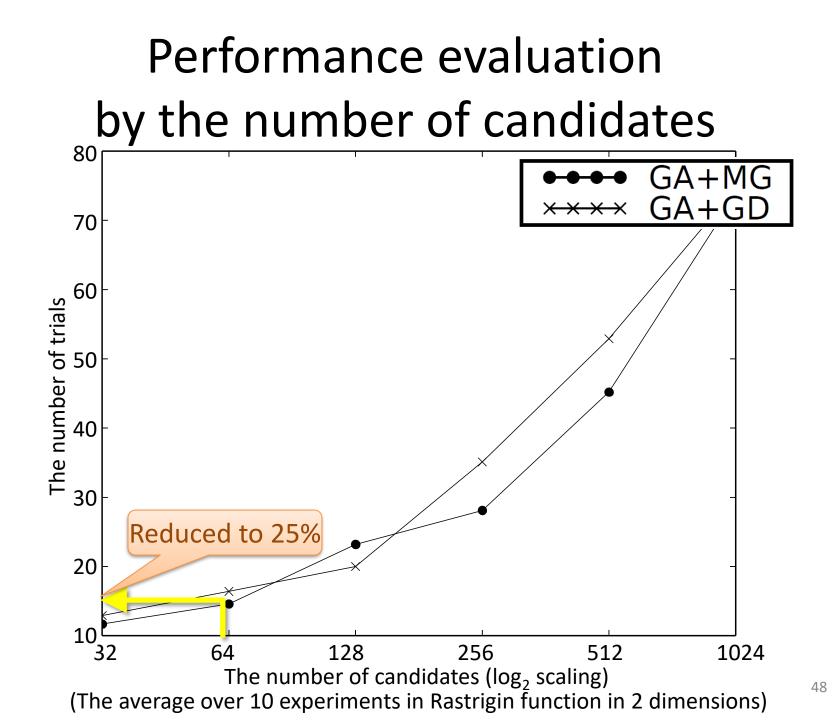
Trial

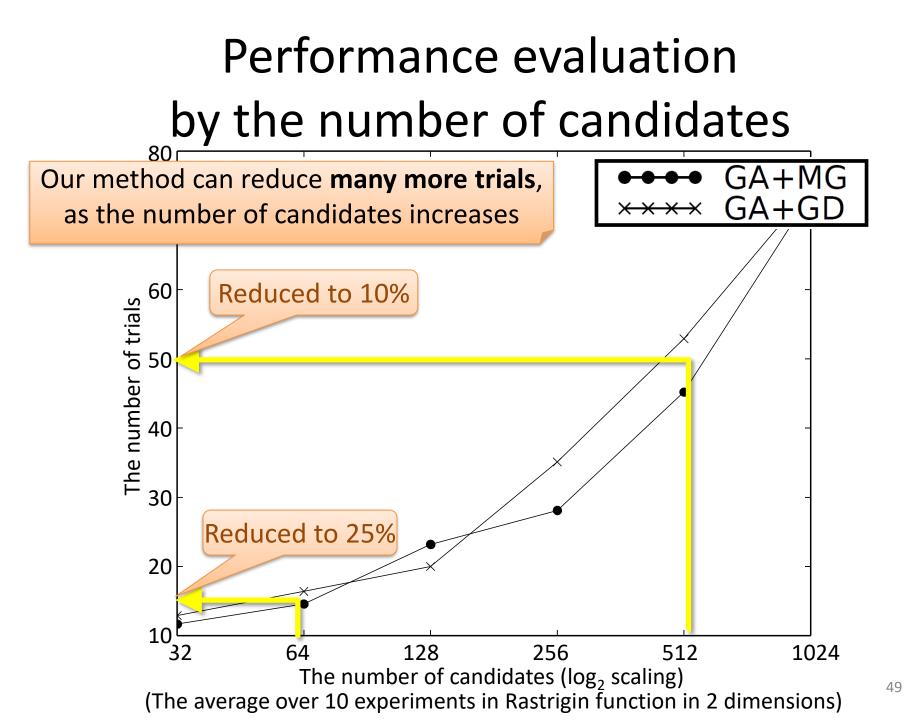
Dimension size	GA+	MG		GA+GD			
	Trial rate (%)	Error ra <mark>te (%)</mark>		Trial rate (%)	Error ra <mark>te (%)</mark>		
2	17.03		0.41	22.56		2.44	
5	40.17		0.16	22.74		4.08	
10	54.48		0.12	25.92		5.09	
50	64.77		0.19	29.16		6.89	
100	64.30		0.13	31.11		6.12	

(the average over 100 experiments using 100 candidates in Rastrigin function)

Trial rate = #trials / #candidates × 100 Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) × 100

(a) Rastrigin





Contents

- Background
- Thinning-out for reducing trials
 - Max Gradient (MG) method
 - Gathering Differences (GD) method
- Performance evaluation by test functions
- Discovery of strong shots on virtual robots
- Conclusions and future work

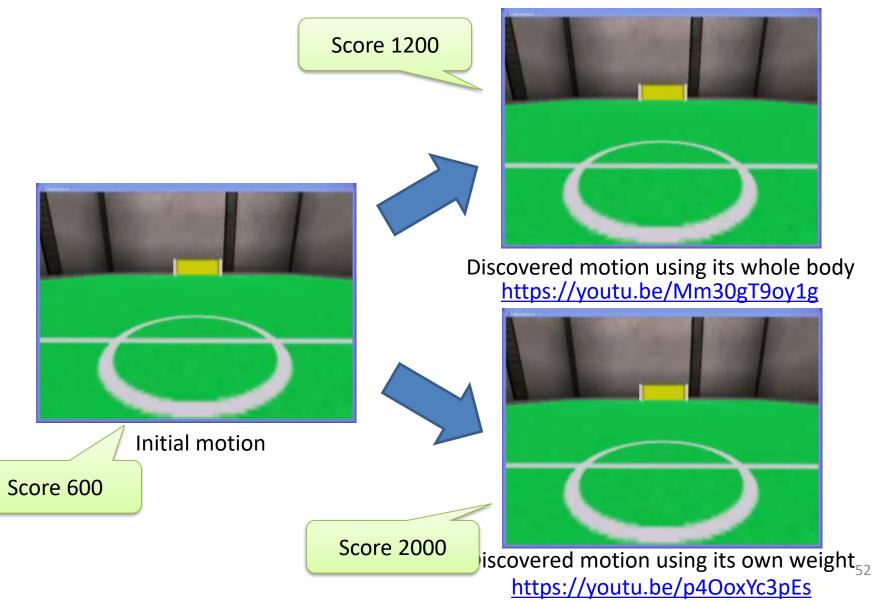
Discovery of strong shot motions

• Experiments in a simulation environment

- Developed by Zaratti et al.(2006)

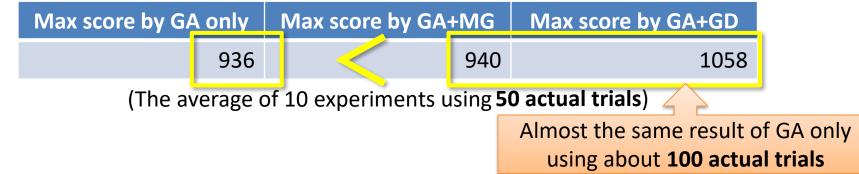
Initial motion (The search space is 75 dimensions) <u>https://youtu.be/GqBj-jrEPI4</u> It takes dozens of hours for 1 experiment

Discovered shot motions

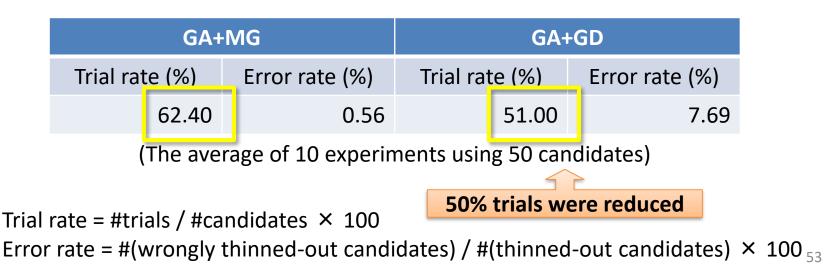


Comparison in skill discovery

Results of maximization by GA only, GA+MG, and GA+GD



Trial rate and error rate of GA+MG and GA+GD



Contents

- Background
- Thinning-out for reducing trials
 - Max Gradient (MG) method
 - Gathering Differences (GD) method
- Performance evaluation by test functions
- Discovery of strong shots on virtual robots
- Conclusions and future work

Conclusions

- Thinning-out for reducing unnecessary trials
 - Max Gradient (MG)
 - Gathering Differences (GD)
- Performance evaluation by test functions
 - MG and GD worked well in various test functions.
- Discovery of strong shot motions

Unexpected dynamic motions

Future work

- Exploration of more useful inferring methods
 - As many as possible
 - As correctly as possible
- Experiments in the real environment
 - Verifying that our method can treat real noise
- Theoretical analysis as a randomized algorithm — O(logn) trials for n candidates in random sampling

Thank you for your attention!

https://youtu.be/L7dDnJLLjv4

https://youtu.be/2-GfOOIy8Xc

Discovered poor shot motions :(