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Background

* For robots to function in the real world,
they need abilities to acquire basic skills

— e.g., walking, running, jumping, catching, throwing,
shooting, hitting, kicking, swimming, flying, ...

Acquisition of passing (shooting) skills on real robots
Passing is to exactly move a ball to the target position



Background

 For robots to function in the real world

they ne Motion (Sequence of joint angles)
[-5.0, 5.0, -10.0, 5.0, 45.0, 60.0, 0.0, 10.0,
— €.8., M 75,0, -50.0, 15.0, 105.0, -60.0, 15.0, 90.0, -7,

shoot -15:0. 5.0, 25.0, 40.0, 60.0, -10.0, 0.0,......... | ing.
ﬂ}.)— y g/

Score is 800

Acquisition of passing (shooting) skills on real robots
Passing is to exactly move a ball to the target position



Main Difficulty in Skill Discovery

e Each trial consumes much time and costs
— Each trial needs more than 30 seconds (average)
— Robots can be broken easily for many trials

Example: if we use 1,000 generations by GA on real robots
Trials = 1,000 (generations)
X 10 (if we use 10 population size)
X 5 (if we use the average of 5 trials for noise reduction)
= 50,000 (trials)
Time = 50,000 (trials) X 30 (seconds)
= 1,500,000 (seconds)
=416 (hours)
=17 (days) > 11 (days), Sleepless World Record

(Robot’s battery is dead in only 30 minutes)
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Thinning-out

* To skip over unnecessary trials
— The same concept as “pruning” in search trees

* By Inferring the upperbound of each score
— We utilize the smoothness of score functions

e Related work
— Acceleration of search methods

— Memory based learning
 Memory-based fitness evaluation GA [Sano et al., 2000]
* Locally weighted regression [Schaal and Atkeson, 1994]

— Typical methods by inferring scores directly
e Approximation of scores using kriging interpolation [Ratle, 1998]



Basic idea of thinning-out

Unnecessary trials = duplicated candidates and unpromising candidates
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Example: Maximization of unknown score function in one dimension
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Basic idea of thinning-out

Unnecessary trials = duplicated candidates and unpromising candidates

score
A

flx)

/\/\ /\/\

Needs for smoothness (or roughness)

Example: Maximization of unknown score function in one dimension

>
X
candidate




Lipschitz condition

—— Lipschitz condition

X: search space

dce R VXl, X, € X ‘ f (Xl) — f (XZ)‘ <c-d (Xl’ XZ) f: score function

d: metric of X

A

fx)

/




f(x,)—c-d(x,X,) < f(x,)< f(x)+c-d(x, XZ)J

—— Lipschitz condition I
X: search space
Jce RVYX,X, e X |T(X)—f(x,)<c-d(X,X,)| f score function
C 1772 ‘ (1) (2)‘ (1 2) d: metric of X
AN
f(x)




f(x)—c-d(x,x,)< f(x,)< f(x)+c-d(x, XZ)J

—— Lipschitz condition

IS

X: search space

dce R ‘v’xl, X, € X ‘ f (Xl) — f (XZ)‘ <c-d (Xl’ X2) f: score function

d: metric of X

fx)

A

Possible range of score Possible range of score




f(x)—c-d(x,x,)< f(x,)< f(x)+c-d(x, XZ)J

—— Lipschitz condition I
X: search space
f(x)—f(x)<c-d(x . Xx f: score function
C € val’xz € X ‘ ( 1) ( 2)‘ ( 1’ 2) d: metric of X
fx)]
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Extension of Lipschitz condition

—— Lipschitz condition

Ace RVx, X, € X |f(x)—f(x,) <c-d(x,X,)

fis said to be c-Lipschitz continuous
c is said to be a Lipschitz constant

extend

Lipschitz condition

3g: R > RVX, X, € X [f(x)— f(X,)] < g(d(x,X,))

f is said to be g-Lipschitz continuous
g is said to be a Lipschitz function
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Thinning-out condition

— Thinning-out condition

F(X)+9(d(X%,) < F(x,) | e
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Thinning-out condition

— Thinning-out condition

T(X)+9(d (X, X)) < T(Xp)
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Thinning-out condition

— Thinning-out condition
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Thinning-out condition

— Thinning-out condition

T (X)+9(d (X, X)) <

The upperZound of the score range ofx

— f(x.)< f(x)
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9
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Inferring methods of Lipschitz function

 Max Gradient (MG)

— Naive method
— Thin-out correctly

e Gathering Differences (GD)
— Heuristics method
— Thin-out a lot



Max Gradient (MG)

e Utilize the maximum gradient
—g(d) =c,d
1x)]

/
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Max Gradient (MG)

e Utilize the maximum gradient

—g(d)=c,d
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Max Gradient (MG)

e Utilize the maximum gradient

—g(d) =c,d
Inferred g(d/\

Qv
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Gathering Differences (GD)

e Utilize gradients with smaller distance in first

— Better approximation of the landscape
1x)]

/

(This is just intuitive illustration)
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Gathering Differences (GD)

e Utilize gradients with smaller distance in first

— Better approximation of the landscape
A
f(x)
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Gathering Differences (GD)

Utilize gradients with smaller distance in first

— Better approximation of the Iandscape

Inferred g(d/‘\

5,0
.
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Test functions

Multiple peaks Single peak with a global view

Ehbb ureed

(a) Rastrigin

|

TEGEEEEE
-EeEBEREEE

(d) Rosenbrock (e) Ridge

The shape of test functions in 2 dimensions

Dependency of variables
(Sano et al. (2000) also utilized these test functions for evaluating distributed GA‘%)9



Sampling method

* Need a sampling method
— Our method only skips over candidates

* Meta-heuristics
— Genetic Algorithm (GA)
— Simulated Annealing
— Hill Climbing
— Policy Gradient
— (Random Sampling)

(We can combine any meta-heuristics and our method)



Performance evaluation
by the kind of test functions

Trial rate and error rate of GA+MG and GA+GD

m T T

Trial rate (%) - Error rate (%) Trial rate (%) - Error rate (%)

19.53 0.23 21.40 1.99
117.02 | 0.18 21.03 | 1.42

17.18 (24 21.02 1.01

Rosenbrock 17.77 0.05 21.29 0.69
Ridge 18.11 0.00 19.60 0.75
Ackley 20.09 2.77 29.52 2.94

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate = #trials / #candidates X 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) X 100"



Performance evaluation
by the kind of test functions

Our method can reduce many trials with a few errors

Trial
GA+MG GA+GD
Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)

19.53 0.23 21.40 1.99
17.02 018 | 21.03 | 142

17.18 0.24 21.52 1.01

Rosenbrock 17.77 0.05 21.23 0.69
Ridge 18.11 0.00 19.60 0.75
Ackley 20.09 2.77 29.52 2.94

(The average over 100 experiments using 100 candidates in 2 dimensions)

Trial rate = #trials / #candidates X 100
Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) X 100"
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Minimization results

Minimization results of GA only, GA+MG, and GA+GD

m Min score by GA onl | Min score by GA+MG | Min score by GA+GD
24 13 19

Rastrigin
712 435 439
43 NG 32 33
Rosenbrock 418 ~ 330 296
Ridge 11,542,427 8,233,764 8,878,178
Ackley 19 18 18

(The average over 100 experiments using 50 trials in 2 dimensions)
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Performance evaluation
by the dimension size of a function

Trial rate and error rate of GA+MG and GA+GD

Dimension size GA+MG GA+GD

Trial rate (%) Error rate (%) Trial rate (%) Error rate (%)
17.03 0.41 22.56 2.44
14017 | 0.16 22.74 | 4.08
54.48 0.12 25.92 5.09
164.77 | 0.19 29.16 | 6.89
64.30 0.13 31.11 6.12

(the average over 100 experiments using 100 candidates in Rastrigin function) s,

Trial rate = #trials / #candidates X 100 .
Error rate = #f(wrongly thinned-out candidates) / #(thinned-out candidates) X“H

46

(a) Rastrigin



Performance evaluation
by the dimension size of a function

In high dimensions
MG has the advantage of error rate
GD has the advantage of trial rate

Dimension size GA+MG GA+GD

Trial |

Trial rate (%) Error ratre(Ld_lTrial rate (%) Error ratre(Lo\
17.03 0.41 22.56 2.44
40.17 016 | 22.74 | 4.08
54.48 0.12 25.92 5.09
64.77 019 | 29.16 || 6.89
64.30 0.13 31.11 6.12

(the average over 100 experiments using 100 candidates in Rastrigin function) #,

Trial rate = #trials / #candidates X 100 ‘
Error rate = #f(wrongly thinned-out candidates) / #(thinned-out candidates) X“H

47
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Performance evaluation
by the number of candidates
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(The average over 10 experiments in Rastrigin function in 2 dimensions)



Performance evaluation
by the number of candidates

801
Our method can reduce many more trials, *-o-o-o GA+|V|G
as the number of candidates increases x>*>x GA+GD
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(The average over 10 experiments in Rastrigin function in 2 dimensions)
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Discovery of strong shot motions

* Experiments in a simulation environment
— Developed by Zaratti et al.(2006)

Initial motion

(The search space is 75 dimensions)
https://youtu.be/GqBj-jirEP14

It takes dozens of hours for 1 experiment

51


https://youtu.be/GqBj-jrEPI4

Discovered shot motions

Discovered motion using its whole body
https://youtu.be/Mm30gT90oylg

Initial motion
[ Score 600

{ >core 2000 oo vered motion using its own weight.,

https://voutu.be/p400xYc3pEs



https://youtu.be/p4OoxYc3pEs
https://youtu.be/Mm30gT9oy1g

Comparison in skill discovery

Results of maximization by GA only, GA+MG, and GA+GD

Max score by GA onl |_Max score by GA+MG | Max score by GA+GD

936 | « 1940 1058

(The average of 10 experiments using 50 actual trials)

Almost the same result of GA only
using about 100 actual trials

Trial rate and error rate of GA+MG and GA+GD

GA+MG GA+GD

Trial rate (%)  Error rate (%) Trial rate (%) Error rate (%)
62.40 0.56 51.00 7.69

(The average of 10 experiments using 50 candidates)

50% trials were reduced
Trial rate = #trials / #candidates X 100 °

Error rate = #(wrongly thinned-out candidates) / #(thinned-out candidates) X 100 .,
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Conclusions

* Thinning-out for reducing unnecessary trials
— Max Gradient (MG)
— Gathering Differences (GD)

* Performance evaluation by test functions

— MG and GD worked well in various test functions.

* Discovery of strong shot motions
— Unexpected dynamic motions



Future work

e Exploration of more useful inferring methods
— As many as possible
— As correctly as possible

* Experiments in the real environment

— Verifying that our method can treat real noise

* Theoretical analysis as a randomized algorithm
— O(logn) trials for n candidates in random sampling



Thank you for your attention!

https://youtu.be/L7dDnJLLjv4 https://voutu.be/2-GfOOly8Xc

Discovered poor shot motions :(
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https://youtu.be/L7dDnJLLjv4
https://youtu.be/2-GfOOIy8Xc

