Cross-Domain Recommendation via Deep Domain Adaptation
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1. Motivation: Recommending Videos to Users in News Service 2. Problem Formulation

Task:

e Given: Video & News services
e Goal: design a Recommender System (RS) that
suggests videos to users who
A. Have never used Video service before
B. But used News service
¢ Constraint:
- Few/No users shared across services

Use case:

e News = popular & having a large user base

e Video = less known (e.qg. relatively new service)
— Making quality recommendations attract new

users in News service who have never used Video service Video Data News Data

Challenge: Conventional RSs don’t work

e Learning from Video users

— Optimised for video users (input = video histories)

— News users don't have video histories

e Learning from News users # possible (no labels)

e Learning from shared users # feasible

— There are few/no shared users Few Shared 7
Users -

— Not enough training examples

Q. How should we utilise knowledge of Video service

and transfer it to News users?

— Our Approach:

Recommendation as Extreme Classification:

Given: "
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(predict a video corresponding to a news user)

with a low expected error: Pr(X,Y)NPT(X,Y)[rl(X) + Y|
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Note: Data domains are distinct P(X, Y) # Pr(X,Y)

— Supervised ML + Training on Dg won't work (error # low)
— Correction via domain adaptation

3. Unsupervised Domain Adaptation

We use Domain Separation Network (DSN) [1]

DSN achieves domain adaptation with:

e Shared encoder: extract predictive features shared across domains
e Private encoder: extract features private to each data domain

predlcted ...... e

e Shared decoder: reconstruct from private + shared features

¢ ObJ ective: LDSN — Lelass + 6t'Lreconst + ﬁLdiff + }/Lsim
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ltems have textual attributes: Evaluation Metric = DCG (ranking quality measure) Minimise w.r.t. classifier

e Video: title, cast, category, short description
e News: title, category

Note: only news articles in entertainment
categories were used

Data representation:
e User history = bag of ltems

- Treat as a document composed of item’s
textual attributes

e Represent history with TF-IDF:

- For each domain, form a vocabulary set
according to TF-IDF value (computed from
histories)

- Combining two vocabulary sets
— common vocabulary set of size 50k

— Input dimension d = 50,000

5. Discussions and Future Work

Compare with baseline Models:

DCG@M = Z 19,, = Y|
log(m +1) 2 Result: Performance Comparison in DCG

e 80% of training/validation/test was subsampled — 1 trial

* NN: e Table entry = Mean DCG = Std (across 5 trials)
- Same neural network trained only on Video data ~ DSN (DCG/CEL) = chosen by DCG/Cross Entropy Loss on validation data
- Compared to investigate the effectiveness of

Discussion: Poor Performance of NN/DSN (CEL)

- Worse than POP, does not capture popularity
- Top-1 item prediction is too hard
- CEL does not give useful signal

in the form of probability distribution)

e Replacing the training loss with a ranking loss

e Combining item side information (info unique to
- DCG better captures quality of predictions (glven

~ domain adaptation Method DCG@] DCG@50 DCG@100

- Considered as strong single-domain content- DSN (DCG) 0.062 £ 0.021 0.287 £ 0.015 0.295 = 0.015

based method DSN (CEL) 0.041 £0.021 0.258 £ 0.023 0.206 = 0.023

e Cross-domain Matrix Factorisation (CAMF) [2]: NN (DCG) 0042 + 0021 0274 +0010 0280 +001]

- SOTA Cross-domain Bayesian matrix NN (CEL) 0.028 £ 0.030 0.247 £0.025 0.256 £ 0.024

~ factorisation

- Trained on binary matrices CdMF 0.001 £ 0.000 0.014 +=0.000 0.064 = 0.000

- De et Use eortant: niermatier POP 0.040 £ 0.001 0.279 £0.002 0.287 £0.001

e POP: suggest items in descending popularity e DSN (DCGQG) = best performance & DSN (DCG) > NN (DCQG)

order e NN/DSN (CEL) underperformed POP

- Non-personalised method e CdMF: worst performance — explicit ratings required; our datasets are

- Compared to see personalisation performance binary matrices & CdMF could not process implicit feedback properly
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