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3. Experiment

1. Introduction

Motivation:
Questions tend to be lengthy and hard to understand.
We aim to convert them easy-to-understand shorter questions.
Task: Extractive Question Summarization
Input : multi-sentence question
Output : extracted single-sentence summary
Existing Approaches (Extractive):
Supervised: - Classification/Regression
[Ishigaki+,2017, Tamura+2007]
- learning-to-rank [Higurashi+,2018]
— Supervised methods require costly labeled data
Unsupervised: - Graph-based (e.g. LexRank) [Erkan+2004] o
- Semantic similarity [Kobayashi+,2018]
— Major unsupervised methods do not perform well
(See our experiments.)
Our Approach:
This paper describes a distant supervision that creates
pseudo labeled data for fraining a summarizer w/o labeled data.
Contributions:
1. We propose a distant supervision approach to create
a pseudo labeled data for training a question summarizer.
2. Our models w/o any supervision performs competitively with
respect to supervised models.
3. We release a large dataset including 2.5M sentences with

pseudo labels.

Datasets:
1. Dataset with pseudo labels (2.5M sentences)

- Labeled data created by our framework.
2. Dataset with manually annotated labels (10K sentences)
- We used a crowdsourcing to annotate the sentences.

Compared Models:
« Our Models (trained on our data with pseudo labels)
- DistNet: NN-based sentence tagger (LSTM + Softmax)
- DistReq: Logistic Regression with N-gram, POS features.

Unsupervised Models

- Lead : Simply selects the initial sentence.

- LexRank: A graph-based algorithm for sentence selection.

- SimEmb: Selects the sentence that has the minimum Word
Movers' Distanse from the input.

. Selects the sentence that has the highes Tt-Id in
the input.
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« Supervised Models (trained on the manually annotated data)
- SupNet: NN-based sentence tagger (LSTM + Softmax)
- SUpReg: Logistic Regression with N-gram, POS features.

Sentence Selection Strategies:

 Greedy: Simply selects the highest scored sentence.

« |nit : Selects the initial sentnece that has higher score than
a specific threthold (tuned on validation data.)

. Selects the highest scored guestion sentence.

2. Proposed Framework
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Our distant supervision approach outperformed all
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Single-sentence questions have summary-like properties:
basically they are self-contained questions.
(= similar to ones that we want to include in the summary).
—Pseudo negative labels : individual sentences extracted from -
extremely long post.
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« Using our pseudo data improved the performance of
NN-based approach (DistNet).

« There is no statistically significant difference between
the best performed model of our distant supervision
approach and the best model of supervised models.
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5. Conclusion

Individual sentences in long post are not summary-like:
basically they are not self-contained and often not a question.
(=we need information from other sentences to understand.)
2. Train Classifier
We trained a binary classifier that outputs a score that
represents how likely the sentence is summary-like.
3. Sentence Selection
We score every sentence in an input. We propose several
sentence selection strategies that use the scores as
explained in Sec.3.

We proposed a distant supervision for extractive
summarization task.

Our approach outperformed unsupervised baselines and
performed competitively with supervised baselines.

The data is publicly available:
http://Ir-www.pi.titech.ac.jp/~ishigaki/chiebukuro/




