

Distant Supervision for Extractive Question Summarization

HH HH HH HH

<u>Tatsuya Ishigaki ¹</u>, Kazuya Machida ¹, Hayato Kobayashi ² Hiroya Takamura ^{1,3} and Manabu Okumura ¹

¹ Tokyo Institute of Technology,
 ² Yahoo Japan Corporation/RIKEN AIP,
 ³ AIST

Extractive Question Summarization

Motivation:

Community question answering (CQA) sites tend to display the first sentence as the headline.

- They do not necessarily represent the most important.
 - → Users face difficulties to efficiently search questions.

Question: Hello, I have an AU's iPhone 5S ...

Hello, I have an AU iPhone 5S, but it still has the default settings
Default Headline Sent.

I have no Wi-Fi at home, so I cannot set it up
Is there any way to do the iPhone's initial
setup without Wi-Fi?
Actual Important Sent.

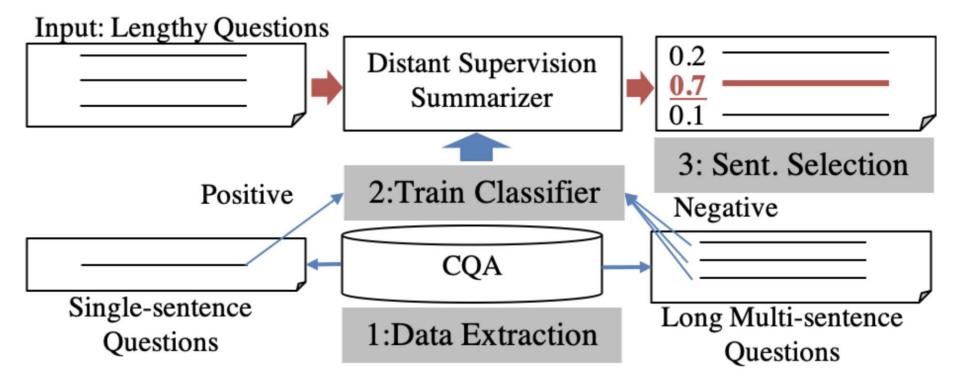
If there is, please tell me:)

Task: Input: question post

Output: single-sentence summary

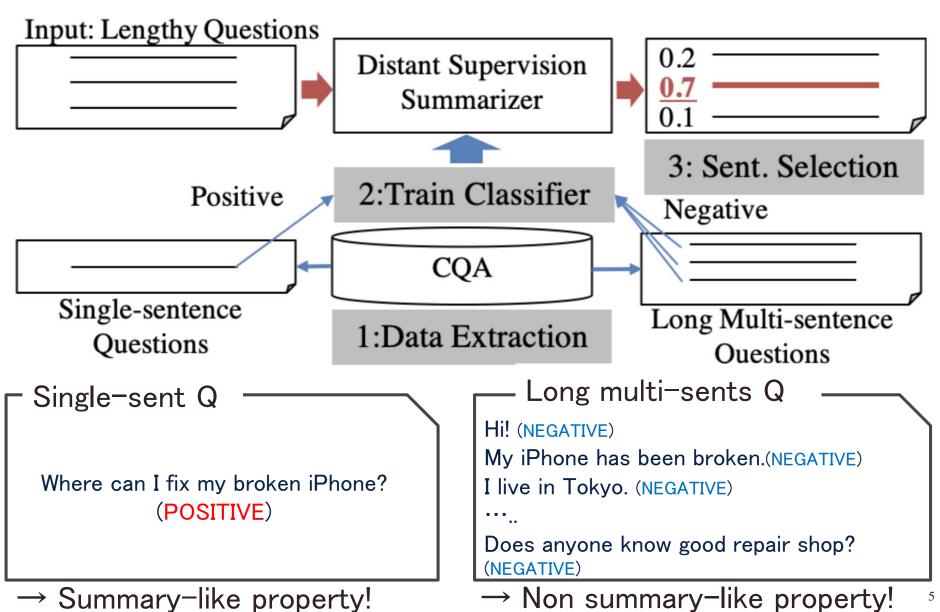
Approaches for Question Summarization

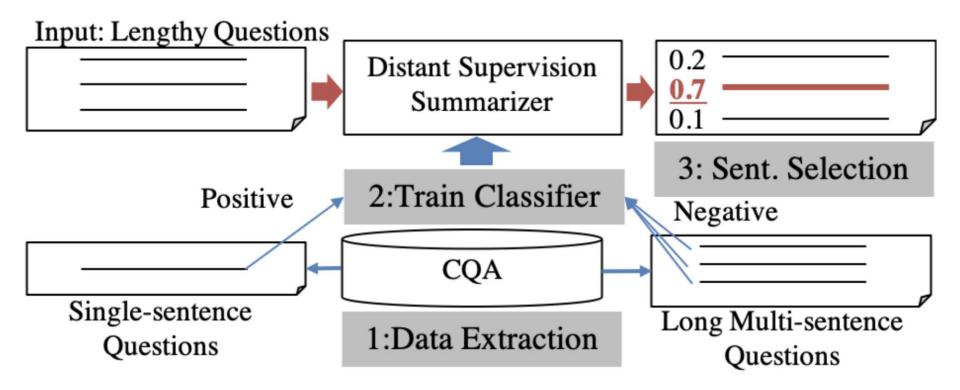
- Previous approaches are mostly supervised.
 - Feature-based classifiers [Tamura+2005];
 - Learning-to-rank approach [Higurashi+2018]
 - © costly annotated data
- Unsupervised models also can be applied to this task.
 - Graph-based model, e.g. LexRank [Erkan+2004]
 - Embedding similarity—based model [Kobayashi+2015]


We propose a distant supervision—based approach for this task.

Automatically labels training instances by using rules/heuristics. [Mints+2009]

We compare our distant supervision-based models with various supervised and unsupervised models.


Our Model


Our Model

Our Model

Step2 and Step3

We train a classifier that determines how likely a sentence is a single-sentence question.

The confidence scores from the classifier are used as importance scores for sentences.

Experiments

- Datasets:
 - Pseudo: 800K positive and 1.7M negative sentences.
 (automatically annotated by our framework.)
 - Label: Manually annotated 12K sentences.
- Evaluation:
 - Label is used for the evaluation data.
 - Accuracy Measure
 (# of correctly predicted questions/ # of total questions)
 - Supervised models are evaluated by 5-fold cross validation
- Results:
 - 1. Our approaches outperformed unsupervised baselines.
 - 2. Our approaches performed competitively with supervised baselines.

	Greedy
DistNet	87.38
${ t DistReg}$	86.17
Lead	81.79
LexRank	78.49
${ t SimEmb}$	59.46
TfIdf	52.03
SupNet	81.67
SupReg	87.89

Conclusion

- We proposed a distant supervision-based approach for extractive question summarization.
- Our models performed competitively with supervised models even without manually annotated data.
- Our data will be publicly available.

- Please come to the slack channel if you have any questions! Please also check our another accepted paper!
 - Semi-Supervised Extractive Question Summarization Using Question-Answer Pairs.
 Kazuya Machida, Tatsuya Ishigaki, Hayato Kobayashi, Hiroya Takamura and Manabu Okumura