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Definition of Fraudster

Competitive Shilling
auction users who bid on their product, as other user
IDs, in order to drive up the final price.
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Contributions

1. Novel application of Moditied Adsoprtion
(MAD) [Talukdar & Crammer, ECMLPKDD'09]

— Have been previously used in NLP
— BJomophily: smoothness constraint
— BBIniformity of innocents: dummy label

2. Incorporate weighted degree centrality
— Fraudsters tend to form very strong ties.
— Help us to yield better results
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Graph Construction
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Graph-based SSL

Modified Adsorption (MAD) [Talukdar & Crammer,09] is used.

Input: partially labeled

Output: soft label matri
weighted undirected graph utput. SOIt fabel Matrix

Blacklisted Whitelisted ) HH Dummy
node node ] label
. No enough
) ) information
INodes|{ Y € R:ix (m+1)
.
Unlabeled - .
node |Possible Labels|+1
Node: instance that want to classify Assign a score indicating likelihood of

Edge: similarity between instances being each label (soft labels)



Dummy Label

» Exceptional case of all other labels

Entropy
Amount of uncertainty
| 1
W0 W

dummy, ~ — Z . ()logk ()

ueN (v)
TN

Neighbors of vertex v Weighted degree of vertex v

i RS k() = ) Wy,

' The score of dummy is high uEN (v)
' when the vertex uniformly
interacts with its neighbors.
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Moditied Absorption (MAD)

Tradeoftf between fitting and smoothness constraints

- Fitting: retain initial labels of seed nodes

- Smoothness: assign same labels to adjacent nodes
A 2
ViR

Fitting Smoothness Regularization

Solving the convex optimization problem

mén D lﬂl(Yz —Y)'S(Y: = Y)) + po Y LY, + pu
lel

where Yis a matrix storing scores of labels (soft label matrix)
Y stores seed information

S indicates positions of seed vertices

L is the Laplacian matrix

R encodes scores of the dummy label and [? regularization.




Overview (2)
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- Ob]ectlve Fraudsters working in the same collusion with the
! blackhsted users are ranked at the top.
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Fraud Scoring

Input: soft label matrix

EEE

|Nodes| -

Bad, Good, Dummy

Output: fraud score of nodes
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SO(U’Y) ~ mtl
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The ratio of Bad’s score to
total scores
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Contributions

1. Novel application of Moditied Adsoprtion
(MAD) [Talukdar & Crammer, ECMIPKDD'09]

— Bilomophily: smoothness constraint

— A8 niform interaction of innocents: dummy label

2. Incorporate weighted degree centrality (WDC)
B _ Fraudsters form very strong ties.



Weighted Degree Centrality (WDC)

Weighted degree centrality of vertex v is the total weights
of edges originating from v

ko(v) = ) W,
ueN(v)

Weight of an
Neighbors of v edge (u’\/)

Fraudsters tend to have higher weighted degree
centralities because of stronger ties.
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Fraud Scoring + WDC

Input: soft label matrix Output: fraud score of nodes
+
y )
\%% Y
T IN@)] e%:( ) v ()
|Nodes| - Neighbors of Weight of an
vertex v edge (u,v)
- R Y,
Bad, Good, Dummy QO(U, Y) = - MAD

A

Z Y’Ul
[=1
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Experiments

* (Questions
1. Does the dummy label help?
2. Comparison with unsupervised methods

3. Comparison with a state-of-the-art Sybil defense
method

e Evaluation metric

Used normalized discounted cumulative gain
(NDCG) to compare results with the blacklisted
users  pmommTommomTososmomoooooo



Dataset

e Real-world dataset from YAHUOKU!

— The largest online auction site in Japan

— Operated by Yahoo! Japan

 Auction transaction

=~ 16 million transactions

=~ 2 million users >

Seller Mixe Bidder
~ 550 blacklisted users d

~ 10,000 whitelisted users

lauctions.yahoo.co.jp/
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With VS Without Dummy Label

with dummy w/o dummy
Node type
«<(NDCG>  SD «<(NDCG> SD
All 0.431 0.015  0.406 0.019
Bidder  0.423 0.026 0.397 0.035
Seller 0.336 0.049 0.284 0.029

Mixed  0.374 0.044 0319 0.024

* Dummy label has a true advantage.
* Support the key idea that innocents tend to .

interact with neighbors unitormly
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Proposed VS Unsupervised
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Compare with
1) Weighted degree
centrality (WDC)
2) Eigenvector centrality
(Eigen. C.)

2-STEP method
outperforms MAD.

Unsupervised methods
yield poor results.

Fraudulent sellers are
more difficult.
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Sybil Detense Method

» Sybil: malicious attackers who

]
|D/1' _-__w {
! i roduc

—create multiple identities L] NG

Fraudster

—influence working of systems

e Shill bidders are one type of Sybil

* We compared our method with a state-of-the-

art SYbﬂ detense method [Viswanath et al.,
SIGCOMM'10]

— On basis of community detection



Proposed VS Sybil
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* Our method outperforms the state-of-the-art Syhil

defense method.

* Fraudsters and innocents may not form well-

established communities.
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Conclusion
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Proposed an online auction fraud detection

approach
Motivated by two main ideas
niformity of innocents

Bz8 omophily

- Fraudsters tend to have higher WDC:s.

Incorporated WDC to the method
Our extended method yields better results.
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Future Works
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* Study limitation of the method
* Incorporate other heuristics

— Bidding strategy

— Value of products

 Extend the method to heterogeneous network

Homogeneous network Heterogeneous network




Scalability
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* The optimization process of MAD can be
parallelized in MapReduce framework.

— Map: sends its current label to neighbors

— Reduce: update its label information

» Hadoop-based implementation is available.

— Junto Label Propagation Toolkit:
https://github.com/parthatalukdar/junto/



