Two Step Graph-based Semi-supervised Learning for Online Auction Fraud Detection

<u>Phiradet Bangcharoensap</u>¹, Hayato Kobayashi², Nobuyuki Shimizu², Satoshi Yamauchi², and Tsuyoshi Murata¹

¹Tokyo Institute of Technology, ²Yahoo Japan Corporation

Definition of Fraudster

Competitive Shilling auction users who bid on their product, as other user IDs, in order to drive up the final price.

Key Ideas

 frequently participate in auctions hosted by fraudulent sellers working in a same group

- rarely interact with fraudsters
- frequently interact with famous sellers

<u>or</u> uniformly interact with various sellers

Key Ideas

Contributions

- 1. Novel application of Modified Adsoprtion (MAD) [Talukdar & Crammer, ECMLPKDD'09]
 - Have been previously used in NLP
 Homophily: smoothness constraint
 Uniformity of innocents: dummy label
- 2. Incorporate weighted degree centrality
 - Fraudsters tend to form very strong ties.
 - Help us to yield better results

Overview

Graph Construction

Product	Seller	Bidder	
P1	А	В	
P1	A	С	
P2	A	С	
P3	В	А	
P3	В	С	
P3	В	С	
P3	В	С	

Online auction transaction

Weighted undirected graph

Graph-based SSL

Modified Adsorption (MAD) [Talukdar & Crammer,'09] is used.

Dummy Label

• Exceptional case of all other labels

Modified Absorption (MAD)

Tradeoff between fitting and smoothness constraints

- Fitting: retain initial labels of seed nodes
- Smoothness: assign same labels to adjacent nodes

Solving the convex optimization problem

$$\min_{\hat{\mathbf{Y}}} \sum_{l \in \mathcal{L}} \begin{bmatrix} \mu_1 (\mathbf{Y}_l - \hat{\mathbf{Y}}_l)^\top \mathbf{S} (\mathbf{Y}_l - \hat{\mathbf{Y}}_l) + \mu_2 \hat{\mathbf{Y}}_l^\top \mathbf{L} \hat{\mathbf{Y}}_l + \mu_3 \| \hat{\mathbf{Y}}_l - \mathbf{R}_l \|^2 \\ \mathbf{Fitting} & \mathbf{Smoothness} \quad \mathbf{Regularization} \end{bmatrix}$$

where Ŷis a matrix storing scores of labels (soft label matrix)
Y stores seed information
S indicates positions of seed vertices
L is the Laplacian matrix
R encodes scores of the dummy label and L² regularization.

H

Overview (2)

Objective: Fraudsters working in the same collusion with the blacklisted users are ranked at the top.

Fraud Scoring

Contributions

- 1. Novel application of Modified Adsoprtion (MAD) [Talukdar & Crammer, ECMLPKDD'09]
 - H omophily: smoothness constraint
 - U niform interaction of innocents: dummy label
- 2. Incorporate weighted degree centrality (WDC)
 Fraudsters form very strong ties.

Weighted Degree Centrality (WDC)

Weighted degree centrality of vertex v is the total weights of edges originating from v

$$k_w(v) = \sum_{u \in N(v)} \mathbf{W}_{uv}$$

Neighbors of v Weight of an edge (u,v)

Fraudsters tend to have higher weighted degree centralities because of stronger ties.

Fraud Scoring + WDC

Experiments

- Questions
 - Does the dummy label help?
 - 2. Comparison with unsupervised methods
 - 3. Comparison with a state-of-the-art Sybil defense method
- Evaluation metric

Used normalized discounted cumulative gain (NDCG) to compare results with the blacklisted users

Higher NDCG is better.

Dataset

- Real-world dataset from YAHUOKU¹
 - The largest online auction site in Japan
 - Operated by Yahoo! Japan
- Auction transaction
 - ≈ 16 million transactions
 - ≈ 2 million users
 - ≈ 550 blacklisted users
 - ≈ 10,000 whitelisted users

With VS Without Dummy Label

Node type	with dummy		w/o dummy	
	<ndcg></ndcg>	SD	<ndcg></ndcg>	SD
All	0.431	0.015	0.406	0.019
Bidder	0.423	0.026	0.397	0.035
Seller	0.336	0.049	0.284	0.029
Mixed	<u>0.374</u>	0.044	0.319	0.024

Proposed VS Unsupervised

Sybil Defense Method

- Sybil: malicious attackers who
 - create multiple identities
 - influence working of systems

- Shill bidders are one type of Sybil
- We compared our method with a state-of-theart Sybil defense method [Viswanath et al., SIGCOMM'10]
 - On basis of community detection

Proposed VS Sybil

Conclusion

- Proposed an online auction fraud detection approach
- Motivated by two main ideas
 Uniformity of innocents
 - H lomophily
 - Fraudsters tend to have higher WDCs.
- Incorporated WDC to the method
- Our extended method yields better results.

Thank you

Future Works

- Study limitation of the method
- Incorporate other heuristics
 - Bidding strategy
 - Value of products
- Extend the method to heterogeneous network

Homogeneous network

Heterogeneous network

Scalability

- The optimization process of MAD can be parallelized in MapReduce framework.
 - Map: sends its current label to neighbors
 - Reduce: update its label information
- Hadoop-based implementation is available.

 Junto Label Propagation Toolkit: https://github.com/parthatalukdar/junto/