Autonomous Learning of Ball Passing by Four-legged Robots and Trial Reduction by Thinning-out and Surrogate Functions

Hayato Kobayashi1, Kohei Hatano2, Akira Ishino1, and Ayumi Shinohara1

1Tohoku University, Japan
2Kyushu University, Japan
Contents

- Background
 - Autonomous learning of ball passing skills
 - Hybrid method for trial reduction
- Experimental results
 - Minimization of test functions
 - Learning of ball passing skills
- Conclusions
For robots to function in the real world, learning abilities are essential

- To adapt to unknown environments
- Legged robots must learn many basic skills
 - E.g., walking, running, pushing, pulling, jumping, catching, kicking, hitting, ...

Learning of ball passing skills by AIBO
RoboCup soccer

Competition for autonomous robots that play soccer

- Small size league
- Middle size league
- Standard platform league (four-legged robot league)
- Simulation league
- Humanoid league

https://www.robocup.org/
Experimental costs using real robots

- Trial
 - Human intervention
 - Time consuming
 - Motor failure

Ex. Learning process of goal saving skills

Initial phase

Later phase

https://youtu.be/9oHA-GH9JT8

https://youtu.be/3Pluuk20xqs
Our result: reduction of the experimental costs

- Autonomous learning method of passing skills
 - For reducing human intervention
 - Application of the idea of autonomous learning of ball trapping skills [Kobayashi et al. 2006]

- Hybrid method for trial reduction
 - For reducing all costs of each trial
 - Improvement of thinning-out [Kobayashi et al. 2007] utilizing surrogate functions
Contents

- Background
- Autonomous learning of ball passing skills
- Hybrid method for trial reduction
- Experimental results
 - Minimization of test functions
 - Learning of ball passing skills
- Conclusions
Accurate shooting motions that move and stop a ball to a specific area
- Neither too strong nor too weak

Shooting motions
- Generated by key-frames (seq. of joint angles)

Ex. Forward shooting motion pushing a ball with its chest
Autonomous learning method of ball passing skills

Robots can acquire passing skills on their own

Related work
- Learning of walking skills [Kim and Uther 2003][Kohl and Stone 2004]
 [Hornby et al. 2005][Saggar et al. 2007]
- Learning of ball acquiring skills [Fidelman and Stone 2004][Fidelman and Stone 2007]
- Learning of ball trapping skills [Kobayashi et al. 2007]
Maximization of the following score function

Score function $f: X \rightarrow \mathbb{R}$ on $X \subseteq \mathbb{R}^{8K}$
(K=#key-frames)

- Generate a motion from $x \in X$
- Make the robot kick the ball using the motion
- Return the distance to the kicked ball
 - Using the median of 5 evaluations

Each key-frame is indicated by 8 joint angles
(= head 2 + fore leg 3 + rear leg 3) using symmetry
Meta-heuristics

- Heuristic algorithms that are independent of problems
 - Genetic Algorithm
 - Simulated Annealing
 - Policy Gradient
 - Hill Climbing
 - ...

- We choose Genetic Algorithm (GA)
Idea: Make the resampling process of new candidates more efficient using meta-heuristics instead of random perturbation.

Thinning-out [Kobayashi et al. 2007]
To skip over the evaluation of unpromising candidates selected by meta-heuristics.

Our hybrid method combining **thinning-out** and **surrogate functions**

<table>
<thead>
<tr>
<th>Candidate $x \in X$</th>
<th>Random perturbation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinning-out cond.</td>
<td>YES (unpromising)</td>
</tr>
<tr>
<td>NO (promising)</td>
<td></td>
</tr>
<tr>
<td>Score func. $f(x)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Candidate $x \in X$</th>
<th>Thinning-out cond.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO (promising)</td>
<td>YES (unpromising)</td>
</tr>
<tr>
<td>Score func. $f(x)$</td>
<td>Surrogate func. $a(x)$ approx. of $f(x)$</td>
</tr>
</tbody>
</table>
Thinning-out
[Kobayashi et al. 2007]

- To reduce unpromising trials
 - The same concept as “pruning” in search trees
- Based on the assumption
 - The score function is g-Lipschitz continuous

- Memory-based learning
 - Memory-based fitness evaluation GA [Sano et al. 2000]
 - Locally weighted regression [Schaal and Atkeson 1994]
 - Acceleration by function approximation [Ratle 1998]

We can easily combine the other methods with thinning-out
Lipschitz condition

\[\exists g : \mathbb{R} \rightarrow \mathbb{R} \quad \forall x_1, x_2 \in X \quad |f(x_1) - f(x_2)| \leq g(d(x_1, x_2)) \]

\(f \) is said to be \(g \)-Lipschitz continuous
\(g \) is said to be a Lipschitz function

\(X \): Search space
\(f \): Score function
\(d \): Metric of \(X \)
The Lipschitz condition is given by:

\[f(x_1) - g(d(x_1, x_2)) \leq f(x_2) \leq f(x_1) + g(d(x_1, x_2)) \]

where:
- \(f(x) \) is the score function
- \(g \) is a Lipschitz function
- \(d \) is the metric of \(X \)
- \(X \) is the search space

A function \(f \) is said to be \(g \)-Lipschitz continuous if there exists a real-valued function \(g \) such that:

\[|f(x_1) - f(x_2)| \leq g(d(x_1, x_2)) \]

for all \(x_1, x_2 \in X \).
\[f(x_1) - g(d(x_1, x_2)) \leq f(x_2) \leq f(x_1) + g(d(x_1, x_2)) \]

Lipschitz condition

\[\exists g : \mathbb{R} \to \mathbb{R} \quad \forall x_1, x_2 \in X \quad |f(x_1) - f(x_2)| \leq g(d(x_1, x_2)) \]

\(f \) is said to be **\(g \)-Lipschitz continuous**

\(g \) is said to be a **Lipschitz function**

Possible range of score

\(X \): Search space

\(f \): Score function

\(d \): Metric of \(X \)
\(f(x_1) - g(d(x_1, x_2)) \leq f(x_2) \leq f(x_1) + g(d(x_1, x_2)) \)

Lipschitz condition

\[\exists g : \mathbb{R} \rightarrow \mathbb{R} \ \forall x_1, x_2 \in X \ |f(x_1) - f(x_2)| \leq g(d(x_1, x_2)) \]

\(f \) is said to be \(g \)-Lipschitz continuous
\(g \) is said to be a Lipschitz function

X: Search space

f: Score function

d: Metric of \(X \)
Thinning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upperbound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

\(f(x) \)

\(X \): Search space

\(f \): Score function,

\(g \)-Lipschitz continuous

\(d \): Metric of \(X \)

Best score \(f(x_b) \)

\(x_b \) (Best point so far)
Thinning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upperbound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

\(f(x) \)

\(x \)

\(f(x_b) \) (Best point so far)

\(x_c \) (Candidate)

\(x_n \) (Nearest neighbor)

\(X: \) Search space

\(f: \) Score function,

\(g: \) Lipschitz continuous

\(d: \) Metric of \(X \)
Thinning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upperbound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

X: Search space
f: Score function,
g-Lipschitz continuous
d: Metric of X

\[f(x_n) + g(d(x_c, x_n)) \]

\(x_n \) (Nearest neighbor)

\(x_b \) (Best point so far)

\(x_c \) (Candidate)
Thinning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upper bound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

\[f(x) \]

\(f(x_b) \) (Best point so far)

\(x_n \) (Nearest neighbor)

\(f(x_n) + g(d(x_c, x_n)) \)

Score range

\(x_c \) (Candidate)

\(X \): Search space

\(f \): Score function,

\(g \): Lipschitz continuous

\(d \): Metric of \(X \)
Thininning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upperbound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

\[X: \text{Search space} \]
\[f: \text{Score function, } \]
\[g: \text{Lipschitz continuous} \]
\[d: \text{Metric of } X \]

\(x_n \) (Nearest neighbor)

\(x_b \) (Best point so far)

\(x_c \) (Candidate)
The thinning-out condition is given by:

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

which implies \(f(x_c) \leq f(x_b) \).

- **X**: Search space
- **f**: Score function
- **g**: Lipschitz continuous
- **d**: Metric of \(X \)

The upper bound of the score range of \(x_c \) is given by:

\[f(x_n) + g(d(x_c, x_n)) \]

And the best score is given by:

\[f(x_b) \]

The point \(x_b \) is the best point so far, and \(x_n \) is the nearest neighbor to \(x_c \).
Thinning-out condition

\[f(x_n) + g(d(x_c, x_n)) \leq f(x_b) \]

The upperbound of the score range of \(x_c \)

\[\Rightarrow f(x_c) \leq f(x_b) \]

X: Search space
f: Score function, g-Lipschitz continuous
d: Metric of X

Score range

\[f(x_n) + g(d(x_c, x_n)) \]

Evaluated

Best score \(f(x_b) \)

\(x_b \) (Best point so far)

\(x_n \) (Nearest neighbor)

\(x_c \) (Candidate)
Inferring methods of Lipschitz functions

- Max Gradient method (MG)
 - Using the max gradient in the history
 - Naïve method
 - Thin-out correctly

- Gathering Differences method (GD)
 - Using the weighted average of gradients in the history
 - Heuristic method
 - Thin-out a lot
 - Useful in high dimension
Function interpolation method [Matheron 1963]
 Initially developed in geostatistics
 Recently used as surrogate functions

Ordinary kriging
 Most common type of kriging
 Related studies used as surrogate functions
 [Martin and Simpson 2003]
 [Jouhaud et al. 2007]
 [Glaz et al. 2008]
Interpolated value of \(x^* \) is represented by

\[
\hat{f}(x^*) = \sum_{i=1}^{n} w_i f(x_i)
\]

where \(f(x_i) \) is the observed score of \(x_i \in X \)

\(w_i \) is the weight of \(f(x_i) \)

The weights for \(x^* \) are calculated by minimizing the error variance

\[
V_e = Var\left[\hat{f}(x^*) - f(x^*) \right]
\]

subject to

\[
\sum_{i=1}^{n} w_i = 1
\]

Given by the unbiased condition and second-order stationarity
Contents

- Background
- Autonomous learning of ball passing skills
- Hybrid method for trial reduction
- Experimental results
 - Minimization of test functions
 - Learning of ball passing skills
- Conclusions
Minimization problems of test functions

Multiple peaks

Single peak with a global view

The shape of test functions in 2 dimensions

Dependency of variables

(Sano et al. (2000) also utilized these test functions for evaluating distributed GA)
Comparison of trial rates and error rates

Trial rates and error rates in 100 candidates (lower = better)

<table>
<thead>
<tr>
<th>Function in 10 dim.</th>
<th>GAT [Kobayashi et al. 2007]</th>
<th>GATS (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trial rate (%)</td>
<td>Error rate (%)</td>
</tr>
<tr>
<td>Rastrigin</td>
<td>54.20</td>
<td>0.80</td>
</tr>
<tr>
<td>Schwefel</td>
<td>62.84</td>
<td>0.87</td>
</tr>
<tr>
<td>Griewank</td>
<td>48.24</td>
<td>0.09</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>54.75</td>
<td>0.06</td>
</tr>
<tr>
<td>Ridge</td>
<td>55.42</td>
<td>0.04</td>
</tr>
<tr>
<td>Ackley</td>
<td>60.37</td>
<td>0.92</td>
</tr>
</tbody>
</table>

(Each value is the average over 100 experiments)

Trial rate = \[
\frac{\#(\text{tried candidates})}{\#(\text{all candidates})} \times 100
\]

Error rate = \[
\frac{\#(\text{wrongly thinned out candidates})}{\#(\text{thinned out candidates})} \times 100
\]

SGA: Simple GA
GAT: SGA with Thinning-out
GATS: GAT with Surrogate func.

The trial rate of SGA is always 100%
Comparison of trial rates and error rates

Trial rates and error rates in 100 candidates

(Each value is the average over 100 experiments)

<table>
<thead>
<tr>
<th>Function in 10 dim.</th>
<th>GAT [Kobayashi et al. 2007]</th>
<th>GATS (this work)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trial rate (%)</td>
<td>Error rate (%)</td>
</tr>
<tr>
<td>Rastrigin</td>
<td>54.20</td>
<td>0.80</td>
</tr>
<tr>
<td>Schwefel</td>
<td>62.84</td>
<td>0.87</td>
</tr>
<tr>
<td>Griewank</td>
<td>48.24</td>
<td>0.09</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>54.75</td>
<td>0.06</td>
</tr>
<tr>
<td>Ridge</td>
<td>55.42</td>
<td>0.04</td>
</tr>
<tr>
<td>Ackley</td>
<td>60.37</td>
<td>0.92</td>
</tr>
</tbody>
</table>

The trial rate of SGA is always 100%.

SGA: Simple GA
GAT: SGA with Thinning-out
GATS: GAT with Surrogate func.
Comparison of minimum scores

Minimum scores in 100 trials (lower = better)

<table>
<thead>
<tr>
<th>Function in 10 dim.</th>
<th>SGA</th>
<th>GAT</th>
<th>GATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rastrigin</td>
<td>260</td>
<td>165</td>
<td>152</td>
</tr>
<tr>
<td>Schwefel</td>
<td>3583</td>
<td>1817</td>
<td>1305</td>
</tr>
<tr>
<td>Griewank</td>
<td>621</td>
<td>211</td>
<td>112</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>17472</td>
<td>> 3326</td>
<td>> 2265</td>
</tr>
<tr>
<td>Ridge</td>
<td>5.7e9</td>
<td>6.4e8</td>
<td>2.3e8</td>
</tr>
<tr>
<td>Ackley</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

(Each value is the average over 100 experiments)

SGA: Simple GA
GAT: SGA with Thinning-out
GATS: GAT with Surrogate func.
Learning of Passing skills

- Initial motion: Forward chest shooting
 - Search space: 48 dim. (=8 joints × 6 key-frames)
 - Shooting distance: 1500 mm

- Distance to the objective: 800 mm

- Min. of passing distances in the passing challenge

Passing challenge in RoboCup

Initial phase of the experiment

https://youtu.be/QKuRUwwTUbQ
Learning results

<table>
<thead>
<tr>
<th>Number of Trials</th>
<th>Score (higher = better)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Proposed hybrid method)</td>
</tr>
<tr>
<td></td>
<td>(Previous method)</td>
</tr>
<tr>
<td></td>
<td>(Normal method)</td>
</tr>
</tbody>
</table>

SGA: Simple GA
GAT: SGA with Thinning-out
GATS: GAT with Surrogate func.
Learned passing skills

Later phase of the experiment
(accuracy of about 3 cm)
https://youtu.be/WiDadAzfasg
Conclusions and future work

- Autonomous learning of ball passing skills
- Hybrid method for trial reduction combining thinning-out and surrogate functions
- The first application of thinning-out in the real world

Future work
- Extension to two-dimensions
- Adaptation to arbitrary distances
Thank you for your attention