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' POI Atmosphere Categorization

. POl categorization that can distinguish
"atmospheres”
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Source Data

- POI pre-registered info. »
* Yelp -means
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' Web Search Session Behavior
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Session | Original Query English Translation
1 I /N ES Yoyogi Park
1 ReRpE 70F Yoyogi Park, lunch
1 K42 RKOE FvF FENL Yoyogi Park, lunch, with children
2 WL AR Shiroyama Park
2 DTN Shiroyama Park, children
2 AN~V RS Fairy Tale Museum, Kagoshima (prefecture)
3 rE SR A Jonanjima Kaihin Park
3 W EEEAR #10 Jonanjima Kaihin Park, fishing
4 U o#EBEARE Kujira Undou Park
4 LU oEHRE JILEC Kujira Undou Park, swimming in river
4 CUoHEBHRE N—RFa— Kujira Undou Park, barbecue
5 S F A TR/N | Hikarigaoka Park
5 FOE RLEARY b Tokyo, autumn leaves spots
6 SM< 50 RE Toyosu Gururi Park
6 EMC D RE HE Toyosu Gururi Park, night view




POI Atmosphere Categorization

. POl categorization that can distinguish
"atmospheres”

. To capture the POl atmosphere is to leverage
embedded vector from user behavior on a web
search engine
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o Next-query prediction with a deep structured semantic model
(DSSM) can be useful for representing “nuance” of each queries.

Search session: (..., “Sumida Park™, “Cherry blossoms”, ...)

Q: Sumida Park ------ t guery encoder f: Q — R"

/. Similarity score
Qy: Cherry blossoms --4--_ N : ,
- B8 R(Q.Q)) = cos(F(Q), £(Q0))
Q1: Rugby world cup

® P
2 2 Trammgrloss
D}’ B(Qr QO) -

|

Q: Video streaming

exp R(Q, Qo)
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Data

480M single queries

The average length of queries in the dataset was 9.14 Japanese characters
The average number of terms in each query was 1.74

The number of unique characters was 26,383
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« Query pairs which have the same nuance got high cosine
similarity scores.

cos sim
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. Query pairs which have the same nuance got high cosine
similarity scores.

cos sim
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Experiment

Exp.1: POI categorization for basic performance evaluation
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Taskl: POl classification

. Classification for POl of mixed categories
located in Tokyo metropolitan area.

- 9 parks
- 6 famous buildings

o 2 restaurant streets
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. Proposed method can clearly separate POI well.
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For embeddings of parks, buildings, and restaurant streets

Proposed method can clearly separate POI well.

y - .
The building #5 is famous for
+B 0.4} having large restaurant area!
5,"% o fB&
02} [ ] o o Park
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« Classification for 532 parks in Tokyo metropolitan area
. Japanese gov. established classification scheme of parks:

e Type 1: Parks that are usually in the suburbs and utilized for
sports activities and recreation.

e Type 2: Green belts in urban spaces for improving the cityscape.

e Type 3: Greenways and forests for improving the safety and
comfort of city life.
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(a) Proposed method.
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Separability Score

o theaverage accuracy of 10 runs of a simple classifier

Results

e Proposed method clearly perform well compared with skip-

gram classification

One-layer Two-layer
Proposed method | 0.929 £+ 0.002 | 0.962 + 0.003
Skip-gram 0.822 £ 0.000 | 0.861 £ 0.008
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Experiment

Exp.2: Connecting Park Atmosphere to the Real World
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Id | Park Name Type | Area X y
a | Komaba Nei. | 40,396 | 0.089 | 0.271
B | Jingudoori Nei. 3,128 | -0.473 | 0.057
y | Minami Ikebukuro Urb. | 7,818 | -0.047 | -0.109
6 | Futako Tamagawa Dis. | 63,000 | 0.420 | -0.191
€ | Denen Chofu Seseragi | Spo. | 30,300 | 0.218 | 0.102
{ | Setagaya Dis. | 78,957 | 0.158 | 0.002
n | Senzoku Ike Gen. | 40,000 | 0.076 | 0.386
6 | Utsukushi Ga Oka Nei. | 21,832 | 0.263 | 0.351
1 | Aobadai Nei. | 38,000 | 0.173 | 0.240
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Two-dimensional PCA visualizations
forembeddings of nine parks
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Conclusions .

- We proposed a new POI categorization method that can represent
the atmosphere of a POl beyond its geospatial features.

- We focus on users’ search behavior with LSTM based encoding using
DSSM pre-training.

- We demonstrated the effectiveness of our method, especially for POI
atmosphere in comparison with the widely used skip-gram models.

- We believe that our method complements the existing m
based on geographic features, and will encourage their us
real world.
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