A Case Study of In-House Competition for Ranking Constructive Comments in a News Service

Hayato Kobayashi1, Hiroaki Taguchi1, Yoshimune Tabuchi1, Chahine Koleeejan1, Ken Kobayashi1, Soichiro Fujita2, Kazuma Murao3, Takeshi Masuyama1, Taichi Yatsuka1, Manabu Okumura2, Satoshi Sekine4

1Yahoo Japan Corporation, 2Tokyo Institute of Technology, 3VISITS Technologies Inc., 4RIKEN
Background

- Ranking user comments is important for online news services because comment visibility directly affects the user experience.
- There have been many studies on comment ranking by user feedback.
 - (Hsu+ 2009, Das Sarma + 2010; Brand&V. D. Merwe 2014; Wei+ 2016)
- However, user feedback does not always represent comment quality.

![Comments on Yahoo! JAPAN News](image.png)

Figure 1: Comments on Yahoo! JAPAN News for article “Lifting the ban on drinking/smoking at 18.”

(e.g., by position bias)
Fujita et al. (2019) introduced the concept of constructiveness in argument analysis for ranking comments without biased user feedback.

- Constructiveness has no correlation with user feedback (Like/Dislikes).

Table 1: Conditions for constructive comments.

<table>
<thead>
<tr>
<th>Pre</th>
<th>Related to article and not libelous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>Intended to stimulate discussions</td>
</tr>
<tr>
<td></td>
<td>Objective and supported by fact</td>
</tr>
<tr>
<td></td>
<td>New idea, solution, or insight</td>
</tr>
<tr>
<td></td>
<td>User’s unique experience</td>
</tr>
</tbody>
</table>

- Maintain decency and relevance
- Represent typical cases of being constructive
This Work

Approach
- Take Fujita et al.’s study one step further towards practical application.
 - Key aspect: Performance improvement by in-house competition.

Contributions
- Report the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.
- Consider several ensembles of the submitted various models.
 - 0.62% improvement in NDCG against the best single model.
In-House Competition

Task

- Ranking comments based on their constructiveness scores (C-scores).
 - C-score = a graded numeric score representing the level of constructiveness.

Dataset

- 59,120 comments (9,845 articles with about 6 comments).
 - Including 995 long comments (with 126-400 characters).

Evaluation

- NDCG: \(\frac{1}{K} \sum_{k=1}^{K} \text{NDCG}@k \)
 \[\text{NDCG}@k = Z_k \sum_{i=1}^{k} \frac{2^r_i - 1}{\log_2(i+1)} \]
- NDCG-L: NDCG only for the long comments (sub measure).
 - To avoid sloppy methods that determine long comments to be constructive.

Table 1: Conditions for constructive comments.
Submission Trend

- Number of submissions increased at the beginning of work (where time is more available) and on the day of the deadline.
- 8 individuals submitted:
 - 14 models during the competition period (before the deadline).
 - +4 models after the deadline.
- Total 18 models for research.

Figure 2: Cumulative number of submissions over the competition period.
- Many models performed better than Baseline.
- Highest performance increase was 2.73% by Model-17 for NDCG.
- Use of the leaderboard had a positive effect for participants submitting high-performance models for both measures in the latter half of the competition.

Figure 3: Increase (%) in NDCG (top) and NDCG-L (bottom) for each model compared to Baseline.

Baseline: A linear rankSVM model with features based on term-frequency vectors.
High-performance Models

- **Model-4**: Highest NDCG (before the deadline).
 - A gradient boosting model with features based on pretrained word embeddings.

- **Model-11**: Highest sum of NDCG and NDCG-L.
 - A linear rankSVM model with features based on C-score prediction (= stacking) and the distance between an article and its comment.

- **Model-14**: Highest NDCG-L.
 - A gradient boosting model with features based on maximal substrings and words.

- **Model-17**: Highest NDCG (after the deadline).
 - A variant of the RankNet model (BiLSTM+GCNN) with features based on subwords.
Ensemble of Submitted Models (Trial after Competition)

- Prepared 4 simple and 2 recent ensemble methods.

- **NormAve**: Use the average of the predicted scores of all models after normalizing the scores (Burges+ 2011).

- **WeightEval**: Use the weighted average of the top-k promising predictions (Fujita+ 2020), which is a hybrid of (continuous) majority voting and averaging.

(The other methods are omitted due to time constraint.)
Results of Ensemble Models

- WeightEval performed the best for the main measure NDCG.
 - 0.62% improvement against the best single model.

- NormAve is the most promising for practical use (no parameter tuning).

Table 2: NDCG variants (%) and precision (%) for (a part of) the submitted models and their ensembles.

<table>
<thead>
<tr>
<th>Model</th>
<th>NDCG</th>
<th>NDCG-L</th>
<th>NDCG@3</th>
<th>Prec@3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>81.63</td>
<td>86.74</td>
<td>81.09</td>
<td>73.30</td>
</tr>
<tr>
<td>Model-4</td>
<td>83.60</td>
<td>82.15</td>
<td>82.79</td>
<td>73.98</td>
</tr>
<tr>
<td>Model-11</td>
<td>83.35</td>
<td>88.34</td>
<td>82.93</td>
<td>73.20</td>
</tr>
<tr>
<td>Model-14</td>
<td>82.53</td>
<td>88.77</td>
<td>81.83</td>
<td>72.86</td>
</tr>
<tr>
<td>Model-17</td>
<td>83.86</td>
<td>88.24</td>
<td>83.27</td>
<td>72.01</td>
</tr>
<tr>
<td>ScoreAve</td>
<td>83.85</td>
<td>86.66</td>
<td>83.20</td>
<td>73.40</td>
</tr>
<tr>
<td>NormAve</td>
<td>84.33</td>
<td>88.41</td>
<td>84.01</td>
<td>74.11</td>
</tr>
<tr>
<td>RankAve</td>
<td>83.46</td>
<td>88.25</td>
<td>82.92</td>
<td>73.30</td>
</tr>
<tr>
<td>TopkAve</td>
<td>84.35</td>
<td>88.35</td>
<td>83.31</td>
<td>73.54</td>
</tr>
<tr>
<td>PostEval</td>
<td>84.32</td>
<td>88.64</td>
<td>83.88</td>
<td>73.91</td>
</tr>
<tr>
<td>WeightEval</td>
<td>84.38</td>
<td>88.30</td>
<td>84.18</td>
<td>74.04</td>
</tr>
</tbody>
</table>
Towards Practical Use

- Qualitative evaluation from the perspective of service.
 - 3 service experts ranked the comment lists created by candidate models.
 - Criterion: Which list should be provided as a service?

- Two cases:
 - Baseline vs. naive methods.
 - Baseline vs. submitted models.
 - Service preferred not to use ensemble models because it would be unreasonable to maintain different models.
Baseline vs. Naive Methods

- **Feedback**: Descending/ascending order of number of Likes/Dislikes.
- **Latest**: Descending order of comment date.
- **Length**: Descending order of comment length.

- Baseline (C-score) clearly performed better than the other methods.
- Constructiveness is useful even in human evaluation, while the previous study (Fujita+ 2019) used NDCG only.

<table>
<thead>
<tr>
<th></th>
<th>Average Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedback</td>
<td>2.61</td>
</tr>
<tr>
<td>Latest</td>
<td>3.42</td>
</tr>
<tr>
<td>Length</td>
<td>2.20</td>
</tr>
<tr>
<td>Baseline (C-score)</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Table 3: Qualitative evaluation results of Baseline and naive methods (lower ranks are better).
Baseline vs. Submitted Models

- Prepared the four high-performance single models.
 - Model-4 (GBM with word embeddings), Model-11 (rankSVM with stacking), Model-14 (GBM with maximal substrings), Model-17 (RankNet with subwords).

- Best single model (Model-17) also had the best average rank.

- Competition format is effective even in a service-level judgment.

<table>
<thead>
<tr>
<th>Model</th>
<th>Average Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>3.86</td>
</tr>
<tr>
<td>Model-4</td>
<td>3.64</td>
</tr>
<tr>
<td>Model-11</td>
<td>3.63</td>
</tr>
<tr>
<td>Model-14</td>
<td>3.41</td>
</tr>
<tr>
<td>Model-17</td>
<td>3.11</td>
</tr>
</tbody>
</table>

Table 4: Qualitative evaluation results of submitted models and Baseline (lower ranks are better).
Conclusion

Summary
- Reported the details of the in-house competition in Yahoo! JAPAN News.
 - 2.73% improvement in performance (NDCG) against the baseline.

Discussion
- Service decision suggests that while an ensemble of different models is promising in an academic sense, it still has challenges in an industrial sense.
 - Model unification/distillation for improving maintainability and latency?
Thank you!