# Modeling User Activities on the Web using Paragraph Vector



Yukihiro Tagami, Hayato Kobayashi, Shingo Ono, Akira Tajima {yutagami, hakobaya, shiono, atajima}@yahoo-corp.jp

### Background

- Large-scale Web sites that provide various Web services deal with a lot of user-related prediction tasks. However,
  - Some of these tasks have small-scale training data
  - User activities on the Web site are ID-based (such as URLs), and too sparse to be used as features for such cases



- We propose an approach to obtain low-dimensional user vectors from sequences of user activities using recent representation learning approaches in NLP field
  - Paragraph Vector [3] along with Skip-gram model [4]
  - Considering users and activities as paragraphs and words
  - In this poster, we focus on Web page visits as user activities and represent it as the URL of the Web page

## Paragraph Vector

- ◆ PV-DM (Distributed Memory model of Paragraph Vector)
- The objective of the vector models for a sequence of *i*-th user activities is to maximize the sum of log probabilities

$$\sum_{t=1}^{T_i} \log p(a_{i,t} \mid a_{i,t-1}, \dots, a_{i,t-s}, u_i)$$

• The PV-DM defines the probability using the softmax function

$$p(a_{i,t} \mid a_{i,t-1}, \dots, a_{i,t-s}, u_i) = \frac{\exp(\boldsymbol{w}_{a_{i,t}}^{\mathrm{T}} \boldsymbol{v}_I)}{\sum_{a \in A} \exp(\boldsymbol{w}_a^{\mathrm{T}} \boldsymbol{v}_I)}$$

 $oldsymbol{w}_{a_{i,t}}$ : "output" vector corresponding to activity  $a_{i,t}$ 

 $oldsymbol{v}_{a_{i,t}}$ : "input" vector corresponding to activity  $a_{i,t}$ 

$$oldsymbol{v}_{u_i}$$
: "input" vector corresponding to user  $u_i$ 

$$oldsymbol{v}_I = [oldsymbol{v}_{a_{i-t-1}}^{\mathrm{T}}, \ldots, oldsymbol{v}_{a_{i-t-s}}^{\mathrm{T}}, oldsymbol{v}_{u_i}^{\mathrm{T}}]^{\mathrm{T}}: ext{concatenated input vector}$$

### Experiments

- Data sets (prediction tasks)
- AdClicker
  - Consisting of the users who clicked contextual ads that are included in the five selected ad campaigns (Ac1–Ac5)
- SiteVisitor
  - Consisting of the users who visited Web sites of five selected advertisers (Sv1–Sv5)

|             | #Training | #Validation | #Testing | #Feature   |
|-------------|-----------|-------------|----------|------------|
| AdClicker   | 51,576    | 10,000      | 10,000   | 786,467    |
| SiteVisitor | 1,862,693 | 20,000      | 20,000   | 17,574,741 |

- We transformed the multi-label problems into a set of binary classification problems and trained logistic regression classifiers
  - The evaluation measure is Area Under ROC curve (AUC)

#### Overview of our approach

Sequences of user activities on the Web





We employ negative sampling approach for fast training

$$\log \sigma(\boldsymbol{w}_{a_{i,t}}^{\mathrm{T}} \boldsymbol{v}_{I}) + k \cdot \mathbb{E}_{a_{n} \sim p_{n}(a)} \left[ \log \sigma(-\boldsymbol{w}_{a_{n}}^{\mathrm{T}} \boldsymbol{v}_{I}) \right] \qquad \sigma(z) = \frac{1}{1 + \exp(-z)}$$

- Settings of learning log-bilinear models
  - About one billion page visits (about 3.52 million unique URLs)
  - The size of input vectors: 400, the size of context window: 5, the number of sampled negative instances: 5



- ◆ Methods to extract user representations
- Bag of URLs (high-dimensional vectors)
- Bin: whether the user visited each Web page or not (1/0)
- Freq: frequencies of the user's each Web page visits
- Log-bilinear models (low-dimensional vectors)
  - Skip-gram: simple averaging of activity vectors
  - PV-DM: proposed method using  $oldsymbol{v}_{u_i}$
  - PV-DM+Skip-gram: concatenated vectors of above two

#### ◆ Results

- PV-DM achieved better results than Skip-gram in SiteVisitor whereas the opposite trend is shown in AdClicker
- The combination method PV-DM+Skip-gram performed better than individual methods

|                 | AdClicker |        |        | SiteVisitor |        |        |        |        |        |        |
|-----------------|-----------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|
|                 | Ac1       | Ac2    | Ac3    | Ac4         | Ac5    | Sv1    | Sv2    | Sv3    | Sv4    | Sv5    |
| Bin             | 0.9757    | 0.7962 | 0.6614 | 0.7024      | 0.7476 | 0.7596 | 0.8165 | 0.7080 | 0.7930 | 0.7286 |
| Freq            | 0.9814    | 0.8068 | 0.6542 | 0.6910      | 0.7433 | 0.7813 | 0.8132 | 0.6977 | 0.7805 | 0.7214 |
| Skip-gram       | 0.9905    | 0.8337 | 0.6545 | 0.7155      | 0.7710 | 0.8012 | 0.8328 | 0.7129 | 0.7927 | 0.7405 |
| PV-DM           | 0.9900    | 0.8174 | 0.6538 | 0.7303      | 0.7675 | 0.8039 | 0.8356 | 0.7169 | 0.7953 | 0.7462 |
| PV-DM+Skip-gram | 0.9912    | 0.8360 | 0.6612 | 0.7412      | 0.7758 | 0.8124 | 0.8395 | 0.7248 | 0.8015 | 0.7516 |