Background

- Large-scale Web sites that provide various Web services deal with a lot of user-related prediction tasks. However,
 - Some of these tasks have small-scale training data
 - User activities on the Web site are ID-based (such as URLs), and too sparse to be used as features for such cases

- We propose an approach to obtain low-dimensional user vectors from sequences of user activities using recent representation learning approaches in NLP field
 - Considering users and activities as paragraphs and words
 - In this poster, we focus on Web page visits as user activities and represent it as the URL of the Web page

Paragraph Vector

- **PV-DM** (Distributed Memory model of Paragraph Vector)
 - The objective of the vector models for a sequence of i-th user activities is to maximize the sum of log probabilities
 \[
 \sum_{i=1}^{T_i} \log p(a_{i,t} | a_{i,t-1}, \ldots, a_{i,1}, u_i)
 \]
 - The PV-DM defines the probability using the softmax function
 \[
 p(a_{i,t} | a_{i,t-1}, \ldots, a_{i,1}, u_i) = \frac{\exp(w^a_{a_{i,t}}v_{i,t})}{\sum_{a \in A} \exp(w^a_{a_{i,t}}v_{i,t})}
 \]
 - \(w^a_{a_{i,t}}\): “output” vector corresponding to activity \(a_{i,t}\)
 - \(v_{a_{i,t}}\): “input” vector corresponding to activity \(a_{i,t}\)
 - \(v_{u_i}\): “input” vector corresponding to user \(u_i\)
 - \(v_t = [v_{a_{i,t-1}}^{T}, \ldots, v_{a_{i,1}}^{T}, v_{u_i}^{T}]^{T}\): concatenated input vector

Experiments

- **Data sets (prediction tasks)**
 - **AdClicker**
 - Consisting of the users who clicked contextual ads that are included in the five selected ad campaigns (Ac1–Ac5)
 - **SiteVisitor**
 - Consisting of the users who visited Web sites of five selected advertisers (Sv1–Sv5)

<table>
<thead>
<tr>
<th>Training</th>
<th>Validation</th>
<th>Testing</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdClicker</td>
<td>51,576</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>SiteVisitor</td>
<td>1,862,693</td>
<td>20,000</td>
<td>20,000</td>
</tr>
</tbody>
</table>

- We transformed the multi-label problems into a set of binary classification problems and trained logistic regression classifiers
- The evaluation measure is Area Under ROC curve (AUC)

- **Overview of our approach**

 Sequences of user activities on the Web

 User representations

 Prediction tasks

 Summarizing

 Input as features

 Learn the vectors to predict the next activity correctly

- **Methods to extract user representations**
 - Bag of URLs (high-dimensional vectors)
 - Bin: whether the user visited each Web page or not (1/0)
 - Freq: frequencies of the user’s each Web page visits
 - Log-bilinear models (low-dimensional vectors)
 - Skip-gram: simple averaging of activity vectors
 - PV-DM: proposed method using \(v_{a_{i,t}}\)
 - PV-DM+Skip-gram: concatenated vectors of above two

- **Results**
 - PV-DM achieved better results than Skip-gram in SiteVisitor whereas the opposite trend is shown in AdClicker
 - The combination method PV-DM+Skip-gram performed better than individual methods